Difference between revisions of "2021 AIME I Problems/Problem 6"

(Solution)
(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
First scale down the whole cube by 12. Let point M have coordinates <math>(x, y, z)</math>, A have coordinates <math>(0, 0, 0)</math>, and <math>s</math> be the side length. Then we have the equations
+
First scale down the whole cube by 12. Let point P have coordinates <math>(x, y, z)</math>, A have coordinates <math>(0, 0, 0)</math>, and <math>s</math> be the side length. Then we have the equations
 
<cmath>(s-x)^2+y^2+z^2=(5\sqrt{10})^2</cmath>
 
<cmath>(s-x)^2+y^2+z^2=(5\sqrt{10})^2</cmath>
 
<cmath>x^2+(s-y)^2+z^2=(5\sqrt{5})^2</cmath>
 
<cmath>x^2+(s-y)^2+z^2=(5\sqrt{5})^2</cmath>
Line 14: Line 14:
 
<cmath>3s^2-2s(x+y+z)+x^2+y^2+z^2=63</cmath>
 
<cmath>3s^2-2s(x+y+z)+x^2+y^2+z^2=63</cmath>
 
Adding the first three equations together, we get <math>3s^2-2s(x+y+z)+3(x^2+y^2+z^2)=575</math>.
 
Adding the first three equations together, we get <math>3s^2-2s(x+y+z)+3(x^2+y^2+z^2)=575</math>.
Subtracting these, we get <math>2(x^2+y^2+z^2)=512</math>, so <math>x^2+y^2+z^2=256</math>. This means <math>AM=16</math>. However, we scaled down everything by 12 so our answer is <math>16*12=\boxed{196}</math>.
+
Subtracting these, we get <math>2(x^2+y^2+z^2)=512</math>, so <math>x^2+y^2+z^2=256</math>. This means <math>AP=16</math>. However, we scaled down everything by 12 so our answer is <math>16*12=\boxed{196}</math>.
 
~JHawk0224
 
~JHawk0224
  

Revision as of 17:28, 11 March 2021

Problem

Segments $\overline{AB}, \overline{AC},$ and $\overline{AD}$ are edges of a cube and $\overline{AG}$ is a diagonal through the center of the cube. Point $P$ satisfies $PB=60\sqrt{10}, PC=60\sqrt{5}, PD=120\sqrt{2},$ and $PG=36\sqrt{7}$. What is $PA$?

Solution

First scale down the whole cube by 12. Let point P have coordinates $(x, y, z)$, A have coordinates $(0, 0, 0)$, and $s$ be the side length. Then we have the equations \[(s-x)^2+y^2+z^2=(5\sqrt{10})^2\] \[x^2+(s-y)^2+z^2=(5\sqrt{5})^2\] \[x^2+y^2+(s-z)^2=(10\sqrt{2})^2\] \[(s-x)^2+(s-y)^2+(s-z)^2=(3\sqrt{7})^2\] These simplify into \[s^2+x^2+y^2+z^2-2sx=250\] \[s^2+x^2+y^2+z^2-2sy=125\] \[s^2+x^2+y^2+z^2-2sz=200\] \[3s^2-2s(x+y+z)+x^2+y^2+z^2=63\] Adding the first three equations together, we get $3s^2-2s(x+y+z)+3(x^2+y^2+z^2)=575$. Subtracting these, we get $2(x^2+y^2+z^2)=512$, so $x^2+y^2+z^2=256$. This means $AP=16$. However, we scaled down everything by 12 so our answer is $16*12=\boxed{196}$. ~JHawk0224

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png