Difference between revisions of "2021 AMC 10A Problems/Problem 21"

m (Solution (Misplaced problem?): Removed extra line.)
Line 16: Line 16:
  
 
~IceMatrix
 
~IceMatrix
 +
 +
==Video Solution by MRENTHUSIASM (English & Chinese)==
 +
https://www.youtube.com/watch?v=0n8EAu2VAiM
 +
 +
~MRENTHUSIASM
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021|ab=A|num-b=20|num-a=22}}
 
{{AMC10 box|year=2021|ab=A|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 04:15, 19 July 2021

Problem

Let $ABCDEF$ be an equiangular hexagon. The lines $AB, CD,$ and $EF$ determine a triangle with area $192\sqrt{3}$, and the lines $BC, DE,$ and $FA$ determine a triangle with area $324\sqrt{3}$. The perimeter of hexagon $ABCDEF$ can be expressed as $m +n\sqrt{p}$, where $m, n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m + n + p$?

$\textbf{(A)} ~47\qquad\textbf{(B)} ~52\qquad\textbf{(C)} ~55\qquad\textbf{(D)} ~58\qquad\textbf{(E)} ~63$

Solution (Misplaced problem?)

Note that the extensions of the given lines will determine an equilateral triangle because the hexagon is equiangular. The area of the first triangle is $192\sqrt{3}$, so the side length is $\sqrt{192\cdot 4}=16\sqrt{3}$. The area of the second triangle is $324\sqrt{3}$, so the side length is $\sqrt{4\cdot 324}=36$. We can set the first value equal to $AB+CD+EF$ and the second equal to $BC+DE+FA$ by substituting some lengths in with different sides of the same equilateral triangle. The perimeter of the hexagon is just the sum of these two, which is $16\sqrt{3}+36$ and $16+3+36=\boxed{55~\textbf{(C)}}$

Video Solution by OmegaLearn (Angle Chasing and Equilateral Triangles)

https://youtu.be/ptBwDcmDaLA

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/8qcbZ8c7fHg

~IceMatrix

Video Solution by MRENTHUSIASM (English & Chinese)

https://www.youtube.com/watch?v=0n8EAu2VAiM

~MRENTHUSIASM

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png