Difference between revisions of "2021 AMC 10A Problems/Problem 25"

m (Solution 2 (Casework))
(31 intermediate revisions by 6 users not shown)
Line 1: Line 1:
==Problem 25==
+
==Problem==
How many ways are there to place <math>3</math> indistinguishable red chips, <math>3</math> indistinguishable blue chips, and <math>3</math> indistinguishable green chips in the squares of a <math>3 \times 3</math> grid so that no two chips of the same color are directly adjacent to each other, either vertically or horizontally.
+
How many ways are there to place <math>3</math> indistinguishable red chips, <math>3</math> indistinguishable blue chips, and <math>3</math> indistinguishable green chips in the squares of a <math>3 \times 3</math> grid so that no two chips of the same color are directly adjacent to each other, either vertically or horizontally?
  
 
<math>\textbf{(A)} ~12\qquad\textbf{(B)} ~18\qquad\textbf{(C)} ~24\qquad\textbf{(D)} ~30\qquad\textbf{(E)} ~36</math>
 
<math>\textbf{(A)} ~12\qquad\textbf{(B)} ~18\qquad\textbf{(C)} ~24\qquad\textbf{(D)} ~30\qquad\textbf{(E)} ~36</math>
==Solution==
 
Call the different colors A,B,C. There are <math>3!=6</math> ways to rearrange these colors to these three letters, so we must remember to multiply by 6.
 
We can assume that A is in the center. In this configuration, the other 2 A's must either lie on the same diagonal or lie in adjacent corner squares. There are two ways to place the A's in the former, while there are four ways to place the A's in the latter. In each case there is only one way to put the three B's and the three C's as shown in the diagrams. This means that there are 4+2=6 ways to arrange A,B, and C in the grid, and there are 6 ways to rearrange the colors. Therefore, there are <math>6\cdot6=36</math> ways in total, which is
 
<math>\boxed{\text{E}}</math>.
 
 
(someone who knows asy please help me insert diagrams, thanks in advance!)
 
 
-happykeeper
 
  
==Solution 2 (Casework)==
+
==Solution 1==
Without the loss of generality, we place a red ball in the top-left square. There are two cases:
+
Call the different colors A,B,C. There are <math>3!=6</math> ways to rearrange these colors to these three letters, so <math>6</math> must be multiplied after the letters are permuted in the grid.  
 
+
WLOG assume that A is in the center.  
(1) The two balls adjacent to the top-left red ball have different colors.
 
 
<cmath>\begin{tabular}{ c c c }
 
<cmath>\begin{tabular}{ c c c }
  R & B & ? \\  
+
  ? & ? & ? \\  
  G & R & ? \\   
+
  ? & A & ? \\   
 
  ? & ? & ?     
 
  ? & ? & ?     
 
\end{tabular}</cmath>
 
\end{tabular}</cmath>
Each placement has 6 permutations, as there are <math>3!=6</math> ways to permute RBG.
+
In this configuration, there are two cases, either all the A's lie on the same diagonal:
 
+
<cmath>\begin{tabular}{ c c c }
There are three sub-cases for Case (1):
+
? & ? & A \\
 +
? & A & ? \\ 
 +
A & ? & ?   
 +
\end{tabular}</cmath>
 +
or all the other two A's are on adjacent corners:
 
<cmath>\begin{tabular}{ c c c }
 
<cmath>\begin{tabular}{ c c c }
  R & B & R \\  
+
  A & ? & A \\  
  G & R & G \\   
+
  ? & A & ? \\   
  B & G & B    
+
  ? & ? & ?    
 
\end{tabular}</cmath>
 
\end{tabular}</cmath>
 +
In the first case there are two ways to order them since there are two diagonals, and in the second case there are four ways to order them since there are four pairs of adjacent corners.
 +
 +
In each case there is only one way to put the three B's and the three C's as shown in the diagrams.
 
<cmath>\begin{tabular}{ c c c }
 
<cmath>\begin{tabular}{ c c c }
R & B & G \\  
+
  C & B & A \\  
G & R & B \\   
+
  B & A & C \\   
R & B & G    
+
  A & C & B     
 
\end{tabular}</cmath>
 
\end{tabular}</cmath>
 
<cmath>\begin{tabular}{ c c c }
 
<cmath>\begin{tabular}{ c c c }
  R & B & G \\  
+
  A & B & A \\  
  G & R & B \\   
+
  C & A & C \\   
  R & G & R    
+
  B & C & B    
 
\end{tabular}</cmath>
 
\end{tabular}</cmath>
So, Case (1) has <math>3\cdot6=18</math> ways.
+
This means that there are <math>4+2=6</math> ways to arrange A,B, and C in the grid, and there are 6 ways to rearrange the colors. Therefore, there are <math>6\cdot6=36</math> ways in total, which is
 +
<math>\boxed{\text{E}}</math>.
 +
 
 +
-happykeeper
  
 +
==Solution 2 (Casework)==
 +
Without the loss of generality, we fix the top-left square with a red chip. There are two cases:
  
(2) The two balls adjacent to the top-left red ball have the same color.
+
<u><b>Case (1): The two chips adjacent to the top-left red chip have different colors.</b></u>
<cmath>\begin{tabular}{ c c c }
+
<asy>
R & B & ? \\
+
unitsize(7mm);
B & ? & ? \\ 
+
add(grid(15,3,white));
? & ? & ?   
+
fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red);
\end{tabular}</cmath>
+
fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue);
Each placement has 6 permutations, as there are <math>\binom32\binom21=6</math> ways to choose three balls consisting of exactly two colors (RBB, RGG, BRR, BGG, GRR, GBB).
+
fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, green);
 +
fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, red);
 +
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5));
 +
draw((6,1)--(9,1), linewidth(1.5));
 +
draw((6,2)--(9,2), linewidth(1.5));
 +
draw((7,0)--(7,3), linewidth(1.5));
 +
draw((8,0)--(8,3), linewidth(1.5));
 +
</asy>
 +
There are three sub-cases for Case (1):
 +
<asy>
 +
unitsize(7mm);
 +
add(grid(15,3,white));
 +
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle, red);
 +
fill((1,2)--(2,2)--(2,3)--(1,3)--cycle, blue);
 +
fill((0,1)--(1,1)--(1,2)--(0,2)--cycle, green);
 +
fill((1,1)--(2,1)--(2,2)--(1,2)--cycle, red);
 +
fill((2,2)--(3,2)--(3,3)--(2,3)--cycle, red);
 +
fill((2,1)--(3,1)--(3,2)--(2,2)--cycle, green);
 +
fill((2,0)--(3,0)--(3,1)--(2,1)--cycle, blue);
 +
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, blue);
 +
fill((1,0)--(2,0)--(2,1)--(1,1)--cycle, green);
 +
 
 +
fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red);
 +
fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue);
 +
fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, green);
 +
fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, red);
 +
fill((8,2)--(9,2)--(9,3)--(8,3)--cycle, green);
 +
fill((8,1)--(9,1)--(9,2)--(8,2)--cycle, blue);
 +
fill((8,0)--(9,0)--(9,1)--(8,1)--cycle, green);
 +
fill((6,0)--(7,0)--(7,1)--(6,1)--cycle, red);
 +
fill((7,0)--(8,0)--(8,1)--(7,1)--cycle, blue);
 +
 
 +
fill((12,2)--(13,2)--(13,3)--(12,3)--cycle, red);
 +
fill((13,2)--(14,2)--(14,3)--(13,3)--cycle, blue);
 +
fill((12,1)--(13,1)--(13,2)--(12,2)--cycle, green);
 +
fill((13,1)--(14,1)--(14,2)--(13,2)--cycle, red);
 +
fill((14,2)--(15,2)--(15,3)--(14,3)--cycle, green);
 +
fill((14,1)--(15,1)--(15,2)--(14,2)--cycle, blue);
 +
fill((14,0)--(15,0)--(15,1)--(14,1)--cycle, red);
 +
fill((12,0)--(13,0)--(13,1)--(12,1)--cycle, blue);
 +
fill((13,0)--(14,0)--(14,1)--(13,1)--cycle, green);
 +
 
 +
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle, linewidth(1.5));
 +
draw((0,1)--(3,1), linewidth(1.5));
 +
draw((0,2)--(3,2), linewidth(1.5));
 +
draw((1,0)--(1,3), linewidth(1.5));
 +
draw((2,0)--(2,3), linewidth(1.5));
 +
 
 +
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5));
 +
draw((6,1)--(9,1), linewidth(1.5));
 +
draw((6,2)--(9,2), linewidth(1.5));
 +
draw((7,0)--(7,3), linewidth(1.5));
 +
draw((8,0)--(8,3), linewidth(1.5));
 +
 
 +
draw((12,0)--(15,0)--(15,3)--(12,3)--cycle, linewidth(1.5));
 +
draw((12,1)--(15,1), linewidth(1.5));
 +
draw((12,2)--(15,2), linewidth(1.5));
 +
draw((13,0)--(13,3), linewidth(1.5));
 +
draw((14,0)--(14,3), linewidth(1.5));
 +
</asy>
 +
As there are <math>3!=6</math> permutations of the three colors, each sub-case has <math>6</math> ways. So, Case (1) has <math>3\cdot6=18</math> ways in total.
 +
 
 +
<u><b>Case (2): The two chips adjacent to the top-left red chip have the same color.</b></u>
 +
<asy>
 +
unitsize(7mm);
 +
add(grid(15,3,white));
 +
fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red);
 +
fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue);
 +
fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, blue);
 +
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5));
 +
draw((6,1)--(9,1), linewidth(1.5));
 +
draw((6,2)--(9,2), linewidth(1.5));
 +
draw((7,0)--(7,3), linewidth(1.5));
 +
draw((8,0)--(8,3), linewidth(1.5));
 +
</asy>
 
There are three sub-cases for Case (2):
 
There are three sub-cases for Case (2):
<cmath>\begin{tabular}{ c c c }
+
<asy>
R & B & R \\
+
unitsize(7mm);
B & G & B \\ 
+
add(grid(15,3,white));
G & R & G   
+
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle, red);
\end{tabular}</cmath>
+
fill((1,2)--(2,2)--(2,3)--(1,3)--cycle, blue);
<cmath>\begin{tabular}{ c c c }
+
fill((0,1)--(1,1)--(1,2)--(0,2)--cycle, blue);
R & B & G \\
+
fill((1,1)--(2,1)--(2,2)--(1,2)--cycle, green);
B & G & R \\ 
+
fill((2,2)--(3,2)--(3,3)--(2,3)--cycle, red);
R & B & G   
+
fill((2,1)--(3,1)--(3,2)--(2,2)--cycle, blue);
\end{tabular}</cmath>
+
fill((2,0)--(3,0)--(3,1)--(2,1)--cycle, green);
<cmath>\begin{tabular}{ c c c }
+
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, green);
R & B & G \\
+
fill((1,0)--(2,0)--(2,1)--(1,1)--cycle, red);
B & G & R \\ 
+
 
G & R & B   
+
fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red);
\end{tabular}</cmath>
+
fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue);
So, Case (2) has <math>3\cdot6=18</math> ways.
+
fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, blue);
 +
fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, green);
 +
fill((8,2)--(9,2)--(9,3)--(8,3)--cycle, green);
 +
fill((8,1)--(9,1)--(9,2)--(8,2)--cycle, red);
 +
fill((8,0)--(9,0)--(9,1)--(8,1)--cycle, green);
 +
fill((6,0)--(7,0)--(7,1)--(6,1)--cycle, red);
 +
fill((7,0)--(8,0)--(8,1)--(7,1)--cycle, blue);
 +
 
 +
fill((12,2)--(13,2)--(13,3)--(12,3)--cycle, red);
 +
fill((13,2)--(14,2)--(14,3)--(13,3)--cycle, blue);
 +
fill((12,1)--(13,1)--(13,2)--(12,2)--cycle, blue);
 +
fill((13,1)--(14,1)--(14,2)--(13,2)--cycle, green);
 +
fill((14,2)--(15,2)--(15,3)--(14,3)--cycle, green);
 +
fill((14,1)--(15,1)--(15,2)--(14,2)--cycle, red);
 +
fill((14,0)--(15,0)--(15,1)--(14,1)--cycle, blue);
 +
fill((12,0)--(13,0)--(13,1)--(12,1)--cycle, green);
 +
fill((13,0)--(14,0)--(14,1)--(13,1)--cycle, red);
 +
 
 +
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle, linewidth(1.5));
 +
draw((0,1)--(3,1), linewidth(1.5));
 +
draw((0,2)--(3,2), linewidth(1.5));
 +
draw((1,0)--(1,3), linewidth(1.5));
 +
draw((2,0)--(2,3), linewidth(1.5));
 +
 
 +
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5));
 +
draw((6,1)--(9,1), linewidth(1.5));
 +
draw((6,2)--(9,2), linewidth(1.5));
 +
draw((7,0)--(7,3), linewidth(1.5));
 +
draw((8,0)--(8,3), linewidth(1.5));
 +
 
 +
draw((12,0)--(15,0)--(15,3)--(12,3)--cycle, linewidth(1.5));
 +
draw((12,1)--(15,1), linewidth(1.5));
 +
draw((12,2)--(15,2), linewidth(1.5));
 +
draw((13,0)--(13,3), linewidth(1.5));
 +
draw((14,0)--(14,3), linewidth(1.5));
 +
</asy>
 +
As there are <math>3!=6</math> permutations of the three colors, each sub-case has <math>6</math> ways. So, Case (2) has <math>3\cdot6=18</math> ways in total.
  
 +
<u><b>Answer</b></u>
  
 
Together, the answer is <math>18+18=\boxed{\textbf{(E)} ~36}.</math>
 
Together, the answer is <math>18+18=\boxed{\textbf{(E)} ~36}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Solution 3 (Casework and Derangements)==
 +
<b>Case (1)</b>: We have a permutation of R, B, and G as all of the rows. There are <math>3!</math> ways to rearrange these three colors. After finishing the first row, we move onto the second. Notice how the second row must be a derangement of the first one. By the derangement formula, <math>\frac{3!}{e} \approx 2</math>, so there are two possible permutations of the second row. (Note: You could have also found the number of derangements of PIE). Finally, there are <math>2</math> possible permutations for the last row. Thus, there are <math>3!\cdot2\cdot2=24</math> possibilities.
 +
 +
 +
<b>Case (2)</b>: All of the rows have two chips that are the same color and one that is different. There are obviously <math>3</math> possible configurations for the first row, <math>2</math> for the second, and <math>2</math> for the third. <math>3\cdot2\cdot2=12</math>.
 +
 +
Therefore, our answer is <math>24+12=\boxed{\textbf{(E)} ~36}.</math>
 +
 +
~michaelchang1
 +
 +
== Video Solution (Easiest) ==
 +
https://www.youtube.com/watch?v=UPUrYN1YuVA ~ MathEx
  
 
== Video Solution by OmegaLearn (Symmetry, Casework, and Reflections/Rotations) ==
 
== Video Solution by OmegaLearn (Symmetry, Casework, and Reflections/Rotations) ==
https://youtu.be/wKJ9ppI-8Ew
+
https://youtu.be/wKJ9ppI-8Ew ~ pi_is_3.14
  
~ pi_is_3.14
+
==See Also==
 +
{{AMC10 box|year=2021|ab=A|num-b=24|after=Last Problem}}
 +
{{MAA Notice}}

Revision as of 08:33, 13 April 2021

Problem

How many ways are there to place $3$ indistinguishable red chips, $3$ indistinguishable blue chips, and $3$ indistinguishable green chips in the squares of a $3 \times 3$ grid so that no two chips of the same color are directly adjacent to each other, either vertically or horizontally?

$\textbf{(A)} ~12\qquad\textbf{(B)} ~18\qquad\textbf{(C)} ~24\qquad\textbf{(D)} ~30\qquad\textbf{(E)} ~36$

Solution 1

Call the different colors A,B,C. There are $3!=6$ ways to rearrange these colors to these three letters, so $6$ must be multiplied after the letters are permuted in the grid. WLOG assume that A is in the center. \[\begin{tabular}{ c c c }  ? & ? & ? \\   ? & A & ? \\    ? & ? & ?     \end{tabular}\] In this configuration, there are two cases, either all the A's lie on the same diagonal: \[\begin{tabular}{ c c c }  ? & ? & A \\   ? & A & ? \\    A & ? & ?     \end{tabular}\] or all the other two A's are on adjacent corners: \[\begin{tabular}{ c c c }  A & ? & A \\   ? & A & ? \\    ? & ? & ?     \end{tabular}\] In the first case there are two ways to order them since there are two diagonals, and in the second case there are four ways to order them since there are four pairs of adjacent corners.

In each case there is only one way to put the three B's and the three C's as shown in the diagrams. \[\begin{tabular}{ c c c }   C & B & A \\    B & A & C \\     A & C & B     \end{tabular}\] \[\begin{tabular}{ c c c }  A & B & A \\   C & A & C \\    B & C & B     \end{tabular}\] This means that there are $4+2=6$ ways to arrange A,B, and C in the grid, and there are 6 ways to rearrange the colors. Therefore, there are $6\cdot6=36$ ways in total, which is $\boxed{\text{E}}$.

-happykeeper

Solution 2 (Casework)

Without the loss of generality, we fix the top-left square with a red chip. There are two cases:

Case (1): The two chips adjacent to the top-left red chip have different colors. [asy] unitsize(7mm); add(grid(15,3,white)); fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red); fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue); fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, green); fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, red); draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5)); draw((6,1)--(9,1), linewidth(1.5)); draw((6,2)--(9,2), linewidth(1.5)); draw((7,0)--(7,3), linewidth(1.5)); draw((8,0)--(8,3), linewidth(1.5)); [/asy] There are three sub-cases for Case (1): [asy] unitsize(7mm); add(grid(15,3,white)); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle, red); fill((1,2)--(2,2)--(2,3)--(1,3)--cycle, blue); fill((0,1)--(1,1)--(1,2)--(0,2)--cycle, green); fill((1,1)--(2,1)--(2,2)--(1,2)--cycle, red); fill((2,2)--(3,2)--(3,3)--(2,3)--cycle, red); fill((2,1)--(3,1)--(3,2)--(2,2)--cycle, green); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle, blue); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, blue); fill((1,0)--(2,0)--(2,1)--(1,1)--cycle, green);  fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red); fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue); fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, green); fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, red); fill((8,2)--(9,2)--(9,3)--(8,3)--cycle, green); fill((8,1)--(9,1)--(9,2)--(8,2)--cycle, blue); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle, green); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle, red); fill((7,0)--(8,0)--(8,1)--(7,1)--cycle, blue);  fill((12,2)--(13,2)--(13,3)--(12,3)--cycle, red); fill((13,2)--(14,2)--(14,3)--(13,3)--cycle, blue); fill((12,1)--(13,1)--(13,2)--(12,2)--cycle, green); fill((13,1)--(14,1)--(14,2)--(13,2)--cycle, red); fill((14,2)--(15,2)--(15,3)--(14,3)--cycle, green); fill((14,1)--(15,1)--(15,2)--(14,2)--cycle, blue); fill((14,0)--(15,0)--(15,1)--(14,1)--cycle, red); fill((12,0)--(13,0)--(13,1)--(12,1)--cycle, blue); fill((13,0)--(14,0)--(14,1)--(13,1)--cycle, green);  draw((0,0)--(3,0)--(3,3)--(0,3)--cycle, linewidth(1.5)); draw((0,1)--(3,1), linewidth(1.5)); draw((0,2)--(3,2), linewidth(1.5)); draw((1,0)--(1,3), linewidth(1.5)); draw((2,0)--(2,3), linewidth(1.5));  draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5)); draw((6,1)--(9,1), linewidth(1.5)); draw((6,2)--(9,2), linewidth(1.5)); draw((7,0)--(7,3), linewidth(1.5)); draw((8,0)--(8,3), linewidth(1.5));  draw((12,0)--(15,0)--(15,3)--(12,3)--cycle, linewidth(1.5)); draw((12,1)--(15,1), linewidth(1.5)); draw((12,2)--(15,2), linewidth(1.5)); draw((13,0)--(13,3), linewidth(1.5)); draw((14,0)--(14,3), linewidth(1.5)); [/asy] As there are $3!=6$ permutations of the three colors, each sub-case has $6$ ways. So, Case (1) has $3\cdot6=18$ ways in total.

Case (2): The two chips adjacent to the top-left red chip have the same color. [asy] unitsize(7mm); add(grid(15,3,white)); fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red); fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue); fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, blue); draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5)); draw((6,1)--(9,1), linewidth(1.5)); draw((6,2)--(9,2), linewidth(1.5)); draw((7,0)--(7,3), linewidth(1.5)); draw((8,0)--(8,3), linewidth(1.5)); [/asy] There are three sub-cases for Case (2): [asy] unitsize(7mm); add(grid(15,3,white)); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle, red); fill((1,2)--(2,2)--(2,3)--(1,3)--cycle, blue); fill((0,1)--(1,1)--(1,2)--(0,2)--cycle, blue); fill((1,1)--(2,1)--(2,2)--(1,2)--cycle, green); fill((2,2)--(3,2)--(3,3)--(2,3)--cycle, red); fill((2,1)--(3,1)--(3,2)--(2,2)--cycle, blue); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle, green); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, green); fill((1,0)--(2,0)--(2,1)--(1,1)--cycle, red);  fill((6,2)--(7,2)--(7,3)--(6,3)--cycle, red); fill((7,2)--(8,2)--(8,3)--(7,3)--cycle, blue); fill((6,1)--(7,1)--(7,2)--(6,2)--cycle, blue); fill((7,1)--(8,1)--(8,2)--(7,2)--cycle, green); fill((8,2)--(9,2)--(9,3)--(8,3)--cycle, green); fill((8,1)--(9,1)--(9,2)--(8,2)--cycle, red); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle, green); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle, red); fill((7,0)--(8,0)--(8,1)--(7,1)--cycle, blue);  fill((12,2)--(13,2)--(13,3)--(12,3)--cycle, red); fill((13,2)--(14,2)--(14,3)--(13,3)--cycle, blue); fill((12,1)--(13,1)--(13,2)--(12,2)--cycle, blue); fill((13,1)--(14,1)--(14,2)--(13,2)--cycle, green); fill((14,2)--(15,2)--(15,3)--(14,3)--cycle, green); fill((14,1)--(15,1)--(15,2)--(14,2)--cycle, red); fill((14,0)--(15,0)--(15,1)--(14,1)--cycle, blue); fill((12,0)--(13,0)--(13,1)--(12,1)--cycle, green); fill((13,0)--(14,0)--(14,1)--(13,1)--cycle, red);  draw((0,0)--(3,0)--(3,3)--(0,3)--cycle, linewidth(1.5)); draw((0,1)--(3,1), linewidth(1.5)); draw((0,2)--(3,2), linewidth(1.5)); draw((1,0)--(1,3), linewidth(1.5)); draw((2,0)--(2,3), linewidth(1.5));  draw((6,0)--(9,0)--(9,3)--(6,3)--cycle, linewidth(1.5)); draw((6,1)--(9,1), linewidth(1.5)); draw((6,2)--(9,2), linewidth(1.5)); draw((7,0)--(7,3), linewidth(1.5)); draw((8,0)--(8,3), linewidth(1.5));  draw((12,0)--(15,0)--(15,3)--(12,3)--cycle, linewidth(1.5)); draw((12,1)--(15,1), linewidth(1.5)); draw((12,2)--(15,2), linewidth(1.5)); draw((13,0)--(13,3), linewidth(1.5)); draw((14,0)--(14,3), linewidth(1.5)); [/asy] As there are $3!=6$ permutations of the three colors, each sub-case has $6$ ways. So, Case (2) has $3\cdot6=18$ ways in total.

Answer

Together, the answer is $18+18=\boxed{\textbf{(E)} ~36}.$

~MRENTHUSIASM

Solution 3 (Casework and Derangements)

Case (1): We have a permutation of R, B, and G as all of the rows. There are $3!$ ways to rearrange these three colors. After finishing the first row, we move onto the second. Notice how the second row must be a derangement of the first one. By the derangement formula, $\frac{3!}{e} \approx 2$, so there are two possible permutations of the second row. (Note: You could have also found the number of derangements of PIE). Finally, there are $2$ possible permutations for the last row. Thus, there are $3!\cdot2\cdot2=24$ possibilities.


Case (2): All of the rows have two chips that are the same color and one that is different. There are obviously $3$ possible configurations for the first row, $2$ for the second, and $2$ for the third. $3\cdot2\cdot2=12$.

Therefore, our answer is $24+12=\boxed{\textbf{(E)} ~36}.$

~michaelchang1

Video Solution (Easiest)

https://www.youtube.com/watch?v=UPUrYN1YuVA ~ MathEx

Video Solution by OmegaLearn (Symmetry, Casework, and Reflections/Rotations)

https://youtu.be/wKJ9ppI-8Ew ~ pi_is_3.14

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png