Difference between revisions of "2021 AMC 10A Problems/Problem 5"

m
(Solution 2 (Convenient Values and Observations))
Line 15: Line 15:
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Solution 3
 +
You know that the mean of the first 12 students is 14, so that means all of them combined had a score of 12*14 = 168. Set the mean of the remaining students (in other words the value you are trying to solve for), to a. The total number of remaining students in a class of size k can be written as (k-12). The total score (k-12) students got combined can be written as a(k-12), and the total score all of the students in the class got was 168 + a(k-12) (the first twelve students, plus the remaining students). The mean of the whole class can be written as frac{168 + a(k-12)}{k}. The mean of the class has already been given as 8, so by just writing the equation frac{168 + a(k-12)}{k} = 8, and solving for a (the mean of (k-12) students) will give you the answer in terms of k, which is frac{8k-168}{k-12}.
  
 
== Video Solution ==
 
== Video Solution ==

Revision as of 14:49, 4 March 2021

Problem

The quiz scores of a class with $k > 12$ students have a mean of $8$. The mean of a collection of $12$ of these quiz scores is $14$. What is the mean of the remaining quiz scores of terms of $k$?

$\textbf{(A)} ~\frac{14-8}{k-12} \qquad\textbf{(B)} ~\frac{8k-168}{k-12} \qquad\textbf{(C)} ~\frac{14}{12} - \frac{8}{k} \qquad\textbf{(D)} ~\frac{14(k-12)}{k^2} \qquad\textbf{(E)} ~\frac{14(k-12)}{8k}$

Solution 1 (Generalized)

The total score in the class is $8k.$ The total score on the $12$ quizzes is $12\cdot14=168.$ Therefore, for the remaining quizzes ($k-12$ of them), the total score is $8k-168.$ Their mean score is $\boxed{\textbf{(B)} ~\frac{8k-168}{k-12}}.$

~MRENTHUSIASM

Solution 2 (Convenient Values and Observations)

Set $k=13.$ The answer is the same as the last student's quiz score, which is $8\cdot13-14\cdot12<0.$ From the answer choices, only $\boxed{\textbf{(B)} ~\frac{8k-168}{k-12}}$ yields a negative value for $k=13.$

~MRENTHUSIASM

==Solution 3 You know that the mean of the first 12 students is 14, so that means all of them combined had a score of 12*14 = 168. Set the mean of the remaining students (in other words the value you are trying to solve for), to a. The total number of remaining students in a class of size k can be written as (k-12). The total score (k-12) students got combined can be written as a(k-12), and the total score all of the students in the class got was 168 + a(k-12) (the first twelve students, plus the remaining students). The mean of the whole class can be written as frac{168 + a(k-12)}{k}. The mean of the class has already been given as 8, so by just writing the equation frac{168 + a(k-12)}{k} = 8, and solving for a (the mean of (k-12) students) will give you the answer in terms of k, which is frac{8k-168}{k-12}.

Video Solution

https://www.youtube.com/watch?v=S4q1ji013JQ&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=5

~ North America Math Contest Go Go Go

Video Solution (Using average formula)

https://youtu.be/jocfZVNGU3o

~ pi_is_3.14

Video Solution (Simple and Quick)

https://youtu.be/STPoBU6A3yU

~ Education, the Study of Everything

Video Solution 4

https://youtu.be/wacb0roj20A

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/50CThrk3RcM/t=399

~IceMatrix

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS