Difference between revisions of "2021 AMC 10B Problems/Problem 22"

(Solution 3)
m (Added in the "See Also" and MAA Notice.)
(28 intermediate revisions by 2 users not shown)
Line 3: Line 3:
  
 
<math>\textbf{(A)} ~47 \qquad\textbf{(B)} ~94 \qquad\textbf{(C)} ~227 \qquad\textbf{(D)} ~471 \qquad\textbf{(E)} ~542</math>
 
<math>\textbf{(A)} ~47 \qquad\textbf{(B)} ~94 \qquad\textbf{(C)} ~227 \qquad\textbf{(D)} ~471 \qquad\textbf{(E)} ~542</math>
==Solution==
+
==Solution 1==
 
Let our denominator be <math>(5!)^3</math>, so we consider all possible distributions.
 
Let our denominator be <math>(5!)^3</math>, so we consider all possible distributions.
  
Line 31: Line 31:
  
 
== Solution 3 ==  
 
== Solution 3 ==  
Use complimentary counting.  
+
Use complementary counting.  
Denote <math>f_n</math> as the number of ways to put n colors to n boxes by 3 people such that no box has uniform color. From this setup we see the question is asking for <math>1-\frac{f_5}{(5!)^3}</math>. To find <math>f_5</math> we want to exclude the cases of a) one box of the same color b) 2 boxes of the same color and so forth. From this, we have
+
Denote <math>T_n</math> as the total number of ways to put <math>n</math> colors to <math>n</math> boxes by 3 people out of which <math>f_n</math> ways are such that no box has uniform color. Notice <math>T_n = (n!)^3</math>. From this setup we see the question is asking for <math>1-\frac{f_5}{(5!)^3}</math>. To find <math>f_5</math> we want to exclude the cases of a) one box of the same color, b) 2 boxes of the same color, c) 3 boxes of same color, d) 4 boxes of the same color, and e) 5 boxes of the same color. Cases d) and e) coincide. From this, we have
<cmath>f_5=(5!)^3-{\binom{5}{1}^2 f_4 - \binom{5}{2}^22!f_3 - \binom{5}{3}^23!f_2 - 5!}</cmath>
 
  
Take for example, case b). There are <math>\binom{5}{2}</math> ways to choose 2 boxes that will have the same color, <math>\binom{5}{2}</math> ways to choose that color, 2! ways to permute the 2 chosen colors, and <math>f_3</math> ways so that the remaining boxes don’t have the same color. The same goes for the rest of the cases.
+
<cmath>f_5=T_5 -{\binom{5}{1}\binom{5}{1}\cdot f_4 - \binom{5}{2}\binom{5}{2}\cdot 2!\cdot f_3 - \binom{5}{3}\binom{5}{3}\cdot 3!\cdot f_2 - 5!}</cmath>
  
Going back to <math>f_5</math>, there are exactly <math>(5!)^3</math> ways for 3 people to rearrange the 5 colors, but we wish to subtract the cases where at least 1 box has the same color.
+
In case b), there are <math>\binom{5}{2}</math> ways to choose 2 boxes that have the same color, <math>\binom{5}{2}</math> ways to choose the two colors, 2! ways to permute the 2 chosen colors, and <math>f_3</math> ways so that the remaining 3 boxes don’t have the same color. The same goes for cases a) and c). In case e), the total number of ways to permute 5 colors is <math>5!</math>. Now, we just need to calculate <math>f_2</math>, <math>f_3</math> and <math>f_4</math>.
Now, we just need to calculate <math>f_2,f_3,f_4</math>.
 
  
<math>f_2=(2!)^3-2 = 6</math>
+
We have <math>f_2=T_2-2 = (2!)^3 - 2 = 6</math>, since we subtract the number of cases where the boxes contain uniform colors, which is 2.  
There are (2!)^3 ways to rearrange colors, but we must subtract the cases where the boxes contain uniform colors. There are 2 ways to do that.  
 
  
<math>f_3=(3!)^3-[3!+ \binom{3}{1}^2f_2] = 216 - [6 + 9\cdot6] = 156 </math>
+
In the same way, <math>f_3=T_3-\Big[3!+ \binom{3}{1}\binom{3}{1}\cdot f_2 \Big] = 156 </math> - again, we must subtract the number of ways at least 1 box has uniform color. There are <math>3!</math> ways if 3 boxes each contains uniform color. Two boxes each contains uniform color is the same as previous. If one box has the same color, there are <math>\binom{3}{1}</math> ways to pick a box, and <math>\binom{3}{1}</math> ways to pick a color for that box, 1! ways to permute the chosen color, and <math>f_2</math> ways for the remaining 2 boxes to have non-uniform colors. Similarly, <math>f_4=(4!)^3-\Big[ 4!+ \binom{4}{2}\binom{4}{2}\cdot 2! \cdot f_2+ \binom{4}{1}\binom{4}{1}\cdot f_3\Big] = 10,872</math>
For <math>f_3</math>, There are <math>(3!)^3</math> ways to rearrange the colors, but we must subtract the ways where boxes have uniform colors. If all 3 boxes have the same color, there are <math>3!</math> ways for the colors to be rearranged. If one box has the same color, there are <math>\binom{3}{1}</math> ways to pick a box, and <math>\binom{3}{1}</math> ways to pick a color for that box. There is 1! Ways to rearrange the color in the box. The remaining boxes must have different colors, so we multiply by <math>f_2</math>
 
  
<math>f_4=(4!)^3-[4!+ \binom{4}{2}^2 2! f_2+ \binom{4}{1}^2*f_3] = 13824 - [24+ 36*2*6 + 16*156] = 10,872</math>
+
Thus, <math>f_5 = f_5=(5!)^3-\Big[\binom{5}{1}\binom{5}{1}\cdot f_4+ \binom{5}{2}\binom{5}{2}\cdot 2!\cdot f_3+\binom{5}{3}\binom{5}{3}\cdot 3!\cdot f_2 + 5!\Big] = (5!)^3 - 306,720</math>
  
Thus, <math>f_5 = f_5=(5!)^3-{\binom{5}{1}^2 f_4+ \binom{5}{2}^2 2!f_3+\binom{5}{3}^23!f_2+5!} = (5!)^3 - [25*10,872 + 100*2*156 + 100*6*6 + 120] = (5!)^3 - 306,720</math>
+
Thus, the probability is <math>\frac{306,720}{(5!)^3} = 71/400</math> and the answer is <math>\boxed{\textbf{(D) }471}</math>
  
Thus, the probability is <cmath>1 - \frac{(5!)^3 - 306,720}{(5!)^3} = 71/400</cmath>
+
-angelinasheeen
<cmath>\boxed{\textbf{(D) }471}</cmath>
 
  
== Video Solution by OmegaLearn (Principal of Inclusion Exclusion) ==
+
== Video Solution by OmegaLearn (Principle of Inclusion Exclusion) ==
 
https://youtu.be/o0S8SqRO0Yc
 
https://youtu.be/o0S8SqRO0Yc
  
 
~ pi_is_3.14
 
~ pi_is_3.14
 
  
 
== Video Solution by Interstigation ==
 
== Video Solution by Interstigation ==
Line 64: Line 58:
 
~ Briefly went over Principal of Inclusion Exclusion using Venn Diagram
 
~ Briefly went over Principal of Inclusion Exclusion using Venn Diagram
  
 
+
==See Also==
 
 
 
{{AMC10 box|year=2021|ab=B|num-b=21|num-a=23}}
 
{{AMC10 box|year=2021|ab=B|num-b=21|num-a=23}}
 +
{{MAA Notice}}

Revision as of 08:56, 2 March 2021

Problem

Ang, Ben, and Jasmin each have $5$ blocks, colored red, blue, yellow, white, and green; and there are $5$ empty boxes. Each of the people randomly and independently of the other two people places one of their blocks into each box. The probability that at least one box receives $3$ blocks all of the same color is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m + n ?$

$\textbf{(A)} ~47 \qquad\textbf{(B)} ~94 \qquad\textbf{(C)} ~227 \qquad\textbf{(D)} ~471 \qquad\textbf{(E)} ~542$

Solution 1

Let our denominator be $(5!)^3$, so we consider all possible distributions.

We use PIE (Principle of Inclusion and Exclusion) to count the successful ones.

When we have at $1$ box with all $3$ balls the same color in that box, there are $_{5} C _{1} \cdot _{5} P _{1} \cdot (4!)^3$ ways for the distributions to occur ($_{5} C _{1}$ for selecting one of the five boxes for a uniform color, $_{5} P _{1}$ for choosing the color for that box, $4!$ for each of the three people to place their remaining items).

However, we overcounted those distributions where two boxes had uniform color, and there are $_{5} C _{2} \cdot _{5} P _{2} \cdot (3!)^3$ ways for the distributions to occur ($_{5} C _{2}$ for selecting two of the five boxes for a uniform color, $_{5} P _{2}$ for choosing the color for those boxes, $3!$ for each of the three people to place their remaining items).

Again, we need to re-add back in the distributions with three boxes of uniform color... and so on so forth.

Our success by PIE is \[_{5} C _{1} \cdot _{5} P _{1} \cdot (4!)^3 - _{5} C _{2} \cdot _{5} P _{2} \cdot (3!)^3 + _{5} C _{3} \cdot _{5} P _{3} \cdot (2!)^3 - _{5} C _{4} \cdot _{5} P _{4} \cdot (1!)^3 + _{5} C _{5} \cdot _{5} P _{5} \cdot (0!)^3 = 120 \cdot 2556.\] \[\frac{120 \cdot 2556}{120^3}=\frac{71}{400},\] yielding an answer of $\boxed{471 \textbf{(D)}}$.

Solution 2

As In Solution 1, the probability is \[\frac{\binom{5}{1}\cdot 5\cdot (4!)^3 - \binom{5}{2}\cdot 5\cdot 4\cdot (3!)^3 + \binom{5}{3}\cdot 5\cdot 4\cdot 3\cdot (2!)^3 - \binom{5}{4}\cdot 5\cdot 4\cdot 3\cdot 2\cdot (1!)^3 + \binom{5}{5}\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{(5!)^3}\] \[= \frac{5\cdot 5\cdot (4!)^3 - 10\cdot 5\cdot 4\cdot (3!)^3 + 10\cdot 5\cdot 4\cdot 3\cdot (2!)^3 - 5\cdot 5! + 5!}{(5!)^3}.\] Dividing by $5!$, we get \[\frac{5\cdot (4!)^2 - 10\cdot (3!)^2 + 10\cdot (2!)^2 - 5 + 1}{(5!)^2}.\] Dividing by $4$, we get \[\frac{5\cdot 6\cdot 24 - 10\cdot 9 + 10 - 1}{30\cdot 120}.\] Dividing by $9$, we get \[\frac{5\cdot 2\cdot 8 - 10 + 1}{10\cdot 40} = \frac{71}{400} \implies \boxed{\textbf{(D) }471}\].


Solution 3

Use complementary counting. Denote $T_n$ as the total number of ways to put $n$ colors to $n$ boxes by 3 people out of which $f_n$ ways are such that no box has uniform color. Notice $T_n = (n!)^3$. From this setup we see the question is asking for $1-\frac{f_5}{(5!)^3}$. To find $f_5$ we want to exclude the cases of a) one box of the same color, b) 2 boxes of the same color, c) 3 boxes of same color, d) 4 boxes of the same color, and e) 5 boxes of the same color. Cases d) and e) coincide. From this, we have

\[f_5=T_5 -{\binom{5}{1}\binom{5}{1}\cdot f_4 - \binom{5}{2}\binom{5}{2}\cdot 2!\cdot f_3 - \binom{5}{3}\binom{5}{3}\cdot 3!\cdot f_2 - 5!}\]

In case b), there are $\binom{5}{2}$ ways to choose 2 boxes that have the same color, $\binom{5}{2}$ ways to choose the two colors, 2! ways to permute the 2 chosen colors, and $f_3$ ways so that the remaining 3 boxes don’t have the same color. The same goes for cases a) and c). In case e), the total number of ways to permute 5 colors is $5!$. Now, we just need to calculate $f_2$, $f_3$ and $f_4$.

We have $f_2=T_2-2 = (2!)^3 - 2 = 6$, since we subtract the number of cases where the boxes contain uniform colors, which is 2.

In the same way, $f_3=T_3-\Big[3!+ \binom{3}{1}\binom{3}{1}\cdot f_2 \Big] = 156$ - again, we must subtract the number of ways at least 1 box has uniform color. There are $3!$ ways if 3 boxes each contains uniform color. Two boxes each contains uniform color is the same as previous. If one box has the same color, there are $\binom{3}{1}$ ways to pick a box, and $\binom{3}{1}$ ways to pick a color for that box, 1! ways to permute the chosen color, and $f_2$ ways for the remaining 2 boxes to have non-uniform colors. Similarly, $f_4=(4!)^3-\Big[ 4!+ \binom{4}{2}\binom{4}{2}\cdot 2! \cdot f_2+ \binom{4}{1}\binom{4}{1}\cdot f_3\Big] = 10,872$

Thus, $f_5 = f_5=(5!)^3-\Big[\binom{5}{1}\binom{5}{1}\cdot f_4+ \binom{5}{2}\binom{5}{2}\cdot 2!\cdot f_3+\binom{5}{3}\binom{5}{3}\cdot 3!\cdot f_2 + 5!\Big] = (5!)^3 - 306,720$

Thus, the probability is $\frac{306,720}{(5!)^3} = 71/400$ and the answer is $\boxed{\textbf{(D) }471}$

-angelinasheeen

Video Solution by OmegaLearn (Principle of Inclusion Exclusion)

https://youtu.be/o0S8SqRO0Yc

~ pi_is_3.14

Video Solution by Interstigation

https://youtu.be/OVW9KhmmrVQ

~ Briefly went over Principal of Inclusion Exclusion using Venn Diagram

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png