# Difference between revisions of "2021 AMC 10B Problems/Problem 3"

## Problem

In an after-school program for juniors and seniors, there is a debate team with an equal number of students from each class on the team. Among the $28$ students in the program, $25\%$ of the juniors and $10\%$ of the seniors are on the debate team. How many juniors are in the program? $\textbf{(A)} ~5 \qquad\textbf{(B)} ~6 \qquad\textbf{(C)} ~8 \qquad\textbf{(D)} ~11 \qquad\textbf{(E)} ~20$

## Solution 1

Say there are $j$ juniors and $s$ seniors in the program. Converting percentages to fractions, $\frac{j}{4}$ and $\frac{s}{10}$ are on the debate team, and since an equal number of juniors and seniors are on the debate team, $\frac{j}{4} = \frac{s}{10}.$

Cross-multiplying and simplifying we get $5j=2s.$ Additionally, since there are $28$ students in the program, $j+s = 28.$ It is now a matter of solving the system of equations $$5j=2s$$ $$j+s=28,$$ and the solution is $j = 8, s = 20.$ Since we want the number of juniors, the answer is $$\boxed{(C) \text{ } 8}.$$

-PureSwag

## Solution 2 (Fast and not rigorous)

We immediately see that $E$ is the only possible amount of seniors, as $10\%$ can only correspond with an answer choice ending with $0$. Thus the number of seniors is $20$ and the number of juniors is $28-20=8\rightarrow \boxed{C}$. ~samrocksnature

## Video Solution by OmegaLearn (System of Equations)

 2021 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions