# 2021 AMC 12A Problems/Problem 11

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

A laser is placed at the point $(3,5)$. The laser beam travels in a straight line. Larry wants the beam to hit and bounce off the $y$-axis, then hit and bounce off the $x$-axis, then hit the point $(7,5)$. What is the total distance the beam will travel along this path? $\textbf{(A) }2\sqrt{10} \qquad \textbf{(B) }5\sqrt2 \qquad \textbf{(C) }10\sqrt2 \qquad \textbf{(D) }15\sqrt2 \qquad \textbf{(E) }10\sqrt5$

## Diagram $[asy] /* Made by MRENTHUSIASM */ size(200); int xMin = -3; int xMax = 9; int yMin = -3; int yMax = 7; draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); pair A = (3,5); pair B = (0,2); pair C = (2,0); pair D = (7,5); draw(A--B--C--D,red); dot(A,linewidth(3.5)); dot(B,linewidth(3.5)); dot(C,linewidth(3.5)); dot(D,linewidth(3.5)); label("(3,5)",A,(0,2)); label("(7,5)",D,(0,2)); [/asy]$ ~MRENTHUSIASM

## Solution 1 (Reflections)

Let $A=(3,5)$ and $D=(7,5).$ Suppose that the beam hits and bounces off the $y$-axis at $B,$ then hits and bounces off the $x$-axis at $C.$

When the beam hits and bounces off a coordinate axis, the angle of incidence and the angle of reflection are congruent. Therefore, we straighten up the path of the beam by reflections:

1. We reflect $\overline{BC}$ about the $y$-axis to get $\overline{BC'}.$
2. We reflect $\overline{CD}$ about the $x$-axis to get $\overline{C'D'}$ with $D'=(7,-5),$ then reflect $\overline{C'D'}$ about the $y$-axis to get $\overline{C'D''}$ with $D''=(-7,-5).$

We obtain the following diagram: $[asy] /* Made by MRENTHUSIASM */ size(225); int xMin = -9; int xMax = 9; int yMin = -7; int yMax = 7; draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); pair A = (3,5); pair B = (0,2); pair C = (2,0); pair D = (7,5); pair E = (-2,0); pair F = (7,-5); pair G = (-7,-5); draw(A--B--C--D,red); draw(B--E,heavygreen+dashed); draw(C--F,heavygreen+dashed); draw(E--G,heavygreen+dashed); dot("A(3,5)",A,(0,2),linewidth(3.5)); dot("B",B,(-2,0),linewidth(3.5)); dot("C",C,(0,-2),linewidth(3.5)); dot("D(7,5)",D,(0,2),linewidth(3.5)); dot("C'",E,(0,-2),linewidth(3.5)); dot("D'(7,-5)",F,(0,-2),linewidth(3.5)); dot("D''(-7,-5)",G,(0,-2),linewidth(3.5)); [/asy]$ The total distance that the beam will travel is \begin{align*} AB+BC+CD&=AB+BC+CD' \\ &=AB+BC'+C'D'' \\ &=AD'' \\ &=\sqrt{((3-(-7))^2+(5-(-5))^2} \\ &=\boxed{\textbf{(C) }10\sqrt2}. \end{align*} ~MRENTHUSIASM (Solution)

~JHawk0224 (Proposal)

## Solution 2 (Parallelogram)

Define points $A,B,C,$ and $D$ as Solution 1 does. Moreover, let $E$ be a point on $\overline{CD}$ such that $\overline{BE}$ is perpendicular to the $y$-axis, and $F$ be a point on $\overline{BE}$ such that $\overline{CF}$ is perpendicular to the $x$-axis, as shown below. $[asy] /* Made by MRENTHUSIASM */ size(200); int xMin = -3; int xMax = 9; int yMin = -3; int yMax = 7; draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); pair A = (3,5); pair B = (0,2); pair C = (2,0); pair D = (7,5); pair E = (4,2); pair F = (2,2); draw(A--B--C--D,red); draw(A--D^^B--E^^C--F,heavygreen+dashed); dot("A(3,5)",A,(0,2),linewidth(3.5)); dot("B",B,(-2,0),linewidth(3.5)); dot("C",C,(0,-2),linewidth(3.5)); dot("D(7,5)",D,(0,2),linewidth(3.5)); dot("E",E,(2,0),linewidth(3.5)); dot("F",F,(0,1.5),linewidth(3.5)); [/asy]$ When the beam hits and bounces off a coordinate axis, the angle of incidence and the angle of reflection are congruent, from which $\angle ABF=\angle CBF$ and $\angle BCF=\angle ECF.$ We conclude that $\triangle BCF\cong\triangle ECF$ by ASA, so $\angle CBF=\angle CEF.$ It follows that $\angle ABF=\angle CEF$ by transitive, so $\overline{AB}\parallel\overline{CD}$ by the Converse of the Alternate Interior Angles Theorem.

Note that $\overline{AD}\parallel\overline{BE}.$ Since the opposite sides are parallel, quadrilateral $ABED$ is a parallelogram. From $\triangle BCF\cong\triangle ECF,$ we get $BF=EF=2,$ so $C=(2,0).$

Let $B=(0,b).$ We equate the slopes of $\overline{AB}$ and $\overline{DC}:$ $$\frac{5-b}{3-0}=\frac{5-0}{7-2},$$ from which $b=2,$ or $B=(0,2).$

By the Distance Formula, we have $AB=3\sqrt2,BC=2\sqrt2,$ and $CD=5\sqrt2.$ The total distance that the beam will travel is $$AB+BC+CD=\boxed{\textbf{(C) }10\sqrt2}.$$

Remark

When a straight line hits and bounces off a coordinate axis at point $P,$ the ray entering $P$ and the ray leaving $P$ always have negative slopes. In this problem, $\overline{AB}$ and $\overline{BC}$ have negative slopes; $\overline{BC}$ and $\overline{CD}$ have negative slopes. So, $\overline{AB}$ and $\overline{CD}$ have the same slope, or $\overline{AB}\parallel\overline{CD}.$

~MRENTHUSIASM

## Solution 3 (Educated Guess)

Define points $A,B,C,$ and $D$ as Solution 1 does.

Since choices $\textbf{(B)}, \textbf{(C)},$ and $\textbf{(D)}$ all involve $\sqrt2,$ we suspect that one of them is the correct answer. We take a guess in faith that $\overline{AB},\overline{BC},$ and $\overline{CD}$ all form $45^\circ$ angles with the coordinate axes, from which $B=(0,2)$ and $C=(2,0).$ The given condition $D=(7,5)$ verifies our guess, as shown below. $[asy] /* Made by MRENTHUSIASM */ size(200); int xMin = -3; int xMax = 9; int yMin = -3; int yMax = 7; //Draws the horizontal gridlines void horizontalLines() { for (int i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (int i = xMin+1; i < xMax; ++i) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (int i = yMin+1; i < yMax; ++i) { draw((-3/16,i)--(3/16,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (int i = xMin+1; i < xMax; ++i) { draw((i,-3/16)--(i,3/16), black+linewidth(1)); } } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); pair A = (3,5); pair B = (0,2); pair C = (2,0); pair D = (7,5); draw(A--B--C--D,red); dot(A,linewidth(3.5)); dot(B,linewidth(3.5)); dot(C,linewidth(3.5)); dot(D,linewidth(3.5)); label("A(3,5)",A,(0,2),UnFill); label("B",B,(-2,0),UnFill); label("C",C,(0,-2),UnFill); label("D(7,5)",D,(0,2),UnFill); [/asy]$ Following the last paragraph of Solution 2 gives the answer $\boxed{\textbf{(C) }10\sqrt2}.$

~MRENTHUSIASM

~ pi_is_3.14

## Video Solution by TheBeautyofMath

~IceMatrix

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 