Difference between revisions of "2021 AMC 12A Problems/Problem 24"

(Solution)
m (Solution 1 (Possible Without Trigonometry))
(38 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
==Diagram==
 
==Diagram==
[[File:2021 AMC 12A Problem 24.png|center]]
+
[[File: 2021 AMC 12A Problem 24.png|center]]
 
~MRENTHUSIASM (by Geometry Expressions)
 
~MRENTHUSIASM (by Geometry Expressions)
  
==Solution==
+
==Solution 1 (Possible Without Trigonometry)==
Let <math>O=\Gamma</math> be the center of the semicircle, <math>X=\Omega</math> be the center of the circle, and <math>M</math> be the midpoint of <math>\overline{QR}.</math> By the Perpendicular Chord Theorem Converse, we have <math>\overline{XM}\perp\overline{QR}</math> and <math>\overline{OM}\perp\overline{QR}.</math> Together, points <math>O, X,</math> and <math>M</math> must be collinear.
+
Let <math>O=\Gamma</math> be the center of the semicircle and <math>X=\Omega</math> be the center of the circle.  
  
Applying the Extended Law of Sines on <math>\triangle PQR,</math> we have <cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,</cmath> in which the radius of <math>\odot \Omega</math> is <math>3.</math>
+
Applying the Extended Law of Sines to <math>\triangle PQR,</math> we find the radius of <math>\odot X:</math> <cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3.</cmath>
  
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ</math>-<math>60^\circ</math>-<math>90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math> By the Pythagorean Theorem in <math>\triangle ORM,</math> we get <math>OM=\frac{13}{2}</math> and <math>OX=OM-XM=5.</math> By the Pythagorean Theorem on <math>\triangle OXP,</math> we obtain <math>OP=4.</math>
+
Alternatively, by the Inscribed Angle Theorem, <math>\triangle QRX</math> is a <math>30^\circ\text{-}30^\circ\text{-}120^\circ</math> triangle with base <math>QR=3\sqrt3.</math> Dividing <math>\triangle QRX</math> into two congruent <math>30^\circ\text{-}60^\circ\text{-}90^\circ</math> triangles, we get that the radius of <math>\odot X</math> is <math>XQ=XR=3</math> by the side-length ratios.
  
[...]
+
Let <math>M</math> be the midpoint of <math>\overline{QR}.</math> By the Perpendicular Chord Theorem Converse, we have <math>\overline{XM}\perp\overline{QR}</math> and <math>\overline{OM}\perp\overline{QR}.</math> Together, points <math>O, X,</math> and <math>M</math> must be collinear.
  
As shown above, we construct an altitude <math>\overline{PC}</math> of <math>\triangle PQR.</math> Since <math>\overline{PC}\perp\overline{RQ}</math> and <math>\overline{OM}\perp\overline{RQ},</math> we know that <math>\overline{PC}\parallel\overline{OM}.</math> We construct <math>D</math> on <math>\overline{PC}</math> such that <math>\overline{XD}\perp\overline{PC}.</math> Clearly, <math>MXDC</math> is a rectangle. Since <math>\angle XPD=\angle OXP</math> by alternate interior angles, we have <math>\triangle XPD\sim\triangle OXP</math> by the AA Similarity, with ratio of similitude <math>\frac{XP}{OX}=\frac 35.</math> Therefore, we get that <math>PD=\frac 95</math> and <math>PC=PD+DC=PD+MX=\frac 95 + \frac 32 = \frac{33}{10}.</math>
+
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ\text{-}60^\circ\text{-}90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math> By the Pythagorean Theorem on right <math>\triangle ORM,</math> we get <math>OM=\frac{13}{2}</math> and <math>OX=OM-XM=5.</math> By the Pythagorean Theorem on right <math>\triangle OXP,</math> we obtain <math>OP=4.</math>
  
The area of <math>\triangle PQR</math> is <cmath>\frac12(RQ)(PC)=\frac12(3\sqrt3)(\frac{33}{10})=\frac{99\sqrt3}{20},</cmath> and the answer is <math>99+3+20=\boxed{</math>\textbf{(A) } 110}.$
+
[[File: 2021 AMC 12A Problem 24(2) (Revised).png|center]]
 +
As shown above, we construct an altitude <math>\overline{PC}</math> of <math>\triangle PQR.</math> Since <math>\overline{PC}\perp\overline{RQ}</math> and <math>\overline{OM}\perp\overline{RQ},</math> we know that <math>\overline{PC}\parallel\overline{OM}.</math> We construct point <math>D</math> on <math>\overline{PC}</math> such that <math>\overline{XD}\perp\overline{PC}.</math> Clearly, quadrilateral <math>MXDC</math> is a rectangle. Since <math>\angle XPD=\angle OXP</math> by alternate interior angles, we have <math>\triangle XPD\sim\triangle OXP</math> by the AA Similarity, with ratio of similitude <math>\frac{XP}{OX}=\frac 35.</math> Therefore, we get <math>PD=\frac 95</math> and <math>PC=PD+DC=PD+XM=\frac 95 + \frac 32 = \frac{33}{10}.</math>
 +
 
 +
The area of <math>\triangle PQR</math> is<cmath>\frac12(RQ)(PC)=\frac12\left(3\sqrt3\right)\left(\frac{33}{10}\right)=\frac{99\sqrt3}{20},</cmath> from which the answer is <math>99+3+20=\boxed{\textbf{(D) } 122}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Solution 2 (Trigonometry)==
 +
<asy>
 +
draw(circle((7,0),7));
 +
pair A = (0, 0);
 +
pair B = (14, 0);
 +
draw(A--B);
 +
draw(circle((11,3),3));
 +
label("$C$", (7, 0), S);
 +
label("$O$", (11, 3), E);
 +
label("$P$", (11, 0), S);
 +
pair C = (7, 0);
 +
pair O = (11, 3);
 +
pair P = (11, 0);
 +
pair Q = intersectionpoints(circle(C, 7), circle(O, 3))[1];
 +
pair R = intersectionpoints(circle(C, 7), circle(O, 3))[0];
 +
draw(C--O);
 +
draw(C--Q);
 +
draw(C--R);
 +
draw(Q--R);
 +
draw(O--P);
 +
draw(O--Q);
 +
draw(O--R);
 +
draw(P--Q);
 +
draw(P--R);
 +
label("$Q$", Q, N);
 +
label("$R$", R, E);
 +
</asy>
 +
 +
Suppose we label the points as shown in the diagram above, where <math>C</math> is the center of the semicircle and <math>O</math> is the center of the circle tangent to <math>\overline{AB}</math>. Since <math>\angle QPR = 60^{\circ}</math>, we have <math>\angle QOR = 2\cdot 60^{\circ}=120^{\circ}</math> and <math>\triangle QOR</math> is a <math>30-30-120</math> triangle, which can be split into two <math>30-60-90</math> triangles by the altitude from <math>O</math>. Since <math>QR=3\sqrt{3},</math> we know <math>OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3</math> by <math>30-60-90</math> triangles. The area of this part of <math>\triangle PQR</math> is <math>\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}</math>. We would like to add this value to the sum of the areas of the other two parts of <math>\triangle PQR</math>.
 +
 +
To find the areas of the other two parts of <math>\triangle PQR</math> using the <math>\sin</math> area formula, we need the sides and included angles. Here we know the sides but what we don't know are the angles. So it seems like we will have to use an angle from another triangle and combine them with the angles we already know to find these angles easily. We know that <math>\angle QOR = 120^{\circ}</math> and triangles <math>\triangle COQ</math> and <math>\triangle COR</math> are congruent as they share a side, <math>CQ=CR,</math> and <math>OQ=OR</math>. Therefore <math>\angle COQ = \angle COR = 120^{\circ}</math>. Suppose <math>CO=x</math>. Then <math>3^{2}+x^{2}-6x\cos{120^{\circ}}=7^{2}</math>, and since <math>\cos{120^{\circ}}=-\tfrac{1}{2}</math>, this simplifies to <math>x^{2}+3x=7^{2}-3^{2}\rightarrow x^{2}+3x-40=0</math>. This factors nicely as <math>(x-5)(x+8)=0</math>, so <math>x=5</math> as <math>x</math> can't be <math>-8</math>. Since <math>CO=5, OP=3</math> and <math>\angle OPC=90^{\circ}</math>, we now know that <math>\triangle OPC</math> is a <math>3-4-5</math> right triangle. This may be useful info for later as we might use an angle in this triangle to find the areas of the other two parts of <math>\triangle PQR</math>.
 +
 +
Let <math>\angle POC = \alpha</math>. Then <math>\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,</math> and <math>\angle POR = 120-\alpha</math>. The sum of the areas of <math>\triangle QOP</math> and <math>\triangle POR</math> is <math>3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],</math> which we will add to <math>\tfrac{9\sqrt{3}}{4}</math> to get the area of <math>\triangle PQR</math>. Observe that <cmath>\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}</cmath>and similarly <math>\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}</math>. Adding these two gives <math>\tfrac{3\sqrt{3}}{5}</math> and multiplying that by <math>\tfrac{9}{2}</math> gets us <math>\tfrac{27\sqrt{3}}{10},</math> which we add to <math>\tfrac{9\sqrt{3}}{4}</math> to get <math>\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}</math>. The answer is <math>99+3+20=102+20=\boxed{\textbf{(D)} ~122}.</math>
 +
 +
~sugar_rush
  
 
==Video Solution by Punxsutawney Phil==
 
==Video Solution by Punxsutawney Phil==
Line 28: Line 67:
 
== Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines ) ==
 
== Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines ) ==
 
https://youtu.be/j965v6ahUZk
 
https://youtu.be/j965v6ahUZk
 +
 +
~pi_is_3.14
  
 
==See also==
 
==See also==

Revision as of 22:57, 7 April 2021

Problem

Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$. Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$. If $QR=3\sqrt3$ and $\angle QPR=60^\circ$, then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$?

$\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad$

Diagram

~MRENTHUSIASM (by Geometry Expressions)

Solution 1 (Possible Without Trigonometry)

Let $O=\Gamma$ be the center of the semicircle and $X=\Omega$ be the center of the circle.

Applying the Extended Law of Sines to $\triangle PQR,$ we find the radius of $\odot X:$ \[XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3.\]

Alternatively, by the Inscribed Angle Theorem, $\triangle QRX$ is a $30^\circ\text{-}30^\circ\text{-}120^\circ$ triangle with base $QR=3\sqrt3.$ Dividing $\triangle QRX$ into two congruent $30^\circ\text{-}60^\circ\text{-}90^\circ$ triangles, we get that the radius of $\odot X$ is $XQ=XR=3$ by the side-length ratios.

Let $M$ be the midpoint of $\overline{QR}.$ By the Perpendicular Chord Theorem Converse, we have $\overline{XM}\perp\overline{QR}$ and $\overline{OM}\perp\overline{QR}.$ Together, points $O, X,$ and $M$ must be collinear.

By the SAS Congruence, we have $\triangle QXM\cong\triangle RXM,$ both of which are $30^\circ\text{-}60^\circ\text{-}90^\circ$ triangles. By the side-length ratios, $RM=\frac{3\sqrt3}{2}, RX=3,$ and $MX=\frac{3}{2}.$ By the Pythagorean Theorem on right $\triangle ORM,$ we get $OM=\frac{13}{2}$ and $OX=OM-XM=5.$ By the Pythagorean Theorem on right $\triangle OXP,$ we obtain $OP=4.$

As shown above, we construct an altitude $\overline{PC}$ of $\triangle PQR.$ Since $\overline{PC}\perp\overline{RQ}$ and $\overline{OM}\perp\overline{RQ},$ we know that $\overline{PC}\parallel\overline{OM}.$ We construct point $D$ on $\overline{PC}$ such that $\overline{XD}\perp\overline{PC}.$ Clearly, quadrilateral $MXDC$ is a rectangle. Since $\angle XPD=\angle OXP$ by alternate interior angles, we have $\triangle XPD\sim\triangle OXP$ by the AA Similarity, with ratio of similitude $\frac{XP}{OX}=\frac 35.$ Therefore, we get $PD=\frac 95$ and $PC=PD+DC=PD+XM=\frac 95 + \frac 32 = \frac{33}{10}.$

The area of $\triangle PQR$ is\[\frac12(RQ)(PC)=\frac12\left(3\sqrt3\right)\left(\frac{33}{10}\right)=\frac{99\sqrt3}{20},\] from which the answer is $99+3+20=\boxed{\textbf{(D) } 122}.$

~MRENTHUSIASM

Solution 2 (Trigonometry)

[asy] draw(circle((7,0),7)); pair A = (0, 0); pair B = (14, 0); draw(A--B); draw(circle((11,3),3)); label("$C$", (7, 0), S); label("$O$", (11, 3), E); label("$P$", (11, 0), S); pair C = (7, 0); pair O = (11, 3); pair P = (11, 0); pair Q = intersectionpoints(circle(C, 7), circle(O, 3))[1]; pair R = intersectionpoints(circle(C, 7), circle(O, 3))[0]; draw(C--O); draw(C--Q); draw(C--R); draw(Q--R); draw(O--P); draw(O--Q); draw(O--R); draw(P--Q); draw(P--R); label("$Q$", Q, N); label("$R$", R, E); [/asy]

Suppose we label the points as shown in the diagram above, where $C$ is the center of the semicircle and $O$ is the center of the circle tangent to $\overline{AB}$. Since $\angle QPR = 60^{\circ}$, we have $\angle QOR = 2\cdot 60^{\circ}=120^{\circ}$ and $\triangle QOR$ is a $30-30-120$ triangle, which can be split into two $30-60-90$ triangles by the altitude from $O$. Since $QR=3\sqrt{3},$ we know $OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3$ by $30-60-90$ triangles. The area of this part of $\triangle PQR$ is $\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}$. We would like to add this value to the sum of the areas of the other two parts of $\triangle PQR$.

To find the areas of the other two parts of $\triangle PQR$ using the $\sin$ area formula, we need the sides and included angles. Here we know the sides but what we don't know are the angles. So it seems like we will have to use an angle from another triangle and combine them with the angles we already know to find these angles easily. We know that $\angle QOR = 120^{\circ}$ and triangles $\triangle COQ$ and $\triangle COR$ are congruent as they share a side, $CQ=CR,$ and $OQ=OR$. Therefore $\angle COQ = \angle COR = 120^{\circ}$. Suppose $CO=x$. Then $3^{2}+x^{2}-6x\cos{120^{\circ}}=7^{2}$, and since $\cos{120^{\circ}}=-\tfrac{1}{2}$, this simplifies to $x^{2}+3x=7^{2}-3^{2}\rightarrow x^{2}+3x-40=0$. This factors nicely as $(x-5)(x+8)=0$, so $x=5$ as $x$ can't be $-8$. Since $CO=5, OP=3$ and $\angle OPC=90^{\circ}$, we now know that $\triangle OPC$ is a $3-4-5$ right triangle. This may be useful info for later as we might use an angle in this triangle to find the areas of the other two parts of $\triangle PQR$.

Let $\angle POC = \alpha$. Then $\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,$ and $\angle POR = 120-\alpha$. The sum of the areas of $\triangle QOP$ and $\triangle POR$ is $3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],$ which we will add to $\tfrac{9\sqrt{3}}{4}$ to get the area of $\triangle PQR$. Observe that \[\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}\]and similarly $\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}$. Adding these two gives $\tfrac{3\sqrt{3}}{5}$ and multiplying that by $\tfrac{9}{2}$ gets us $\tfrac{27\sqrt{3}}{10},$ which we add to $\tfrac{9\sqrt{3}}{4}$ to get $\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}$. The answer is $99+3+20=102+20=\boxed{\textbf{(D)} ~122}.$

~sugar_rush

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=cEHF5iWMe9c

Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines )

https://youtu.be/j965v6ahUZk

~pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png