Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

m (Solution 2 (Oversimplified but Risky))
Line 32: Line 32:
  
 
~Arcticturn
 
~Arcticturn
 +
 +
 +
== Solution 3 ==
 +
Similarly to Solution 1, use the discriminant to get <math>b^2\leq 4c</math> and <math>c^2\leq 4b</math>. These can be rearranged to <math>c\geq \frac{1}{4}b^2</math> and <math>b\geq \frac{1}{4}c^2</math>. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:
 +
[asy]
 +
Label f;
 +
f.p=fontsize(6);
 +
xaxis(0,5,Ticks(f, 1.0));
 +
yaxis(0,5,Ticks(f, 1.0));
 +
real f(real x)
 +
{
 +
return 0.25x^2;
 +
}
 +
real g(real x)
 +
{
 +
return 2*sqrt(x);
 +
}
 +
dot((1,1));
 +
dot((2,1));
 +
dot((1,2));
 +
dot((2,2));
 +
dot((3,3));
 +
dot((4,4));
 +
draw(graph(f,0,5));
 +
draw(graph(g,0,5));
 +
[/asy]
 +
We are looking for lattice points(since b and c are positive integers), of which we can count <math>\boxed{\textbf{(B) } 6}</math>.
 +
 +
~aop2014
 +
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:29, 23 November 2021

Problem

How many ordered pairs of positive integers $(b,c)$ exist where both $x^2+bx+c=0$ and $x^2+cx+b=0$ do not have distinct, real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad$

Solution 1 (Casework)

A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:

  1. Since $x^2+bx+c=0$ does not have real solutions, we have $b^2\leq 4c.$
  2. Since $x^2+cx+b=0$ does not have real solutions, we have $c^2\leq 4b.$

Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\] We apply casework to the value of $b:$

  • If $b=1,$ then $1\leq 16c^2\leq 64,$ from which $c=1,2.$
  • If $b=2,$ then $16\leq 16c^2\leq 128,$ from which $c=1,2.$
  • If $b=3,$ then $81\leq 16c^2\leq 192,$ from which $c=3.$
  • If $b=4,$ then $256\leq 16c^2\leq 256,$ from which $c=4.$

Together, there are $\boxed{\textbf{(B) } 6}$ ordered pairs $(b,c),$ namely $(1,1),(1,2),(2,1),(2,2),(3,3),$ and $(4,4).$

~MRENTHUSIASM

Solution 2 (Oversimplified but Risky)

A quadratic equation $Ax^2+Bx+C=0$ has one real solution if and only if $\sqrt{B^2-4AC}=0.$ Similarly, it has imaginary solutions if and only if $\sqrt{B^2-4AC}<0.$ We proceed as following:

We want both $x^2+bx+c$ to be $1$ value or imaginary and $x^2+cx+b$ to be $1$ value or imaginary. $x^2+4x+4$ is one such case since $\sqrt {b^2-4ac}$ is $0.$ Also, $x^2+3x+3, x^2+2x+2, x^2+x+1$ are always imaginary for both $b$ and $c.$ We also have $x^2+x+2$ along with $x^2+2x+1$ since the latter has one solution, while the first one is imaginary. Therefore, we have $6$ total ordered pairs of integers, which is $\boxed{\textbf{(B) } 6}.$

~Arcticturn


Solution 3

Similarly to Solution 1, use the discriminant to get $b^2\leq 4c$ and $c^2\leq 4b$. These can be rearranged to $c\geq \frac{1}{4}b^2$ and $b\geq \frac{1}{4}c^2$. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this: [asy] Label f; f.p=fontsize(6); xaxis(0,5,Ticks(f, 1.0)); yaxis(0,5,Ticks(f, 1.0)); real f(real x) { return 0.25x^2; } real g(real x) { return 2*sqrt(x); } dot((1,1)); dot((2,1)); dot((1,2)); dot((2,2)); dot((3,3)); dot((4,4)); draw(graph(f,0,5)); draw(graph(g,0,5)); [/asy] We are looking for lattice points(since b and c are positive integers), of which we can count $\boxed{\textbf{(B) } 6}$.

~aop2014


See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png