Difference between revisions of "2021 Fall AMC 12B Problems/Problem 13"

(Solution 2)
(Solution 2)
Line 17: Line 17:
  
 
==Solution 2==
 
==Solution 2==
Let <math>c=\frac{2\pi}{p}</math> where <math>p</math> is an odd prime number and <math>q</math> is any integer.
+
This question seems very similar to quadratic residues and reciprocities. It is like Gauss's lemma in number theory or Euler's criterion. Let <math>c=\frac{2\pi}{p}</math> where <math>p</math> is an odd prime number and <math>q</math> is any integer.
  
 
Then <math>\dfrac{\sin(qc)\sin(2qc)\ldots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\ldots\sin(\frac{p-1}{2}c)}</math> is the Legendre symbol <math>\left(\frac{q}{p}\right)</math>. Legendre symbol is calculated using [[quadratic reciprocity]] which is <math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}</math>. The Legendre symbol <math>\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}</math>
 
Then <math>\dfrac{\sin(qc)\sin(2qc)\ldots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\ldots\sin(\frac{p-1}{2}c)}</math> is the Legendre symbol <math>\left(\frac{q}{p}\right)</math>. Legendre symbol is calculated using [[quadratic reciprocity]] which is <math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}</math>. The Legendre symbol <math>\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}</math>

Revision as of 06:08, 17 November 2022

Problem

Let $c = \frac{2\pi}{11}.$ What is the value of \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\]

$\textbf{(A)}\ {-}1 \qquad\textbf{(B)}\ {-}\frac{\sqrt{11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\ \frac{10}{11} \qquad\textbf{(E)}\ 1$

Solution

Plugging in $c$, we get \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}.\] Since $\sin(x+2\pi)=\sin(x),$ $\sin(2\pi-x)=\sin(-x),$ and $\sin(-x)=-\sin(x),$ we get \[\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.\]

~kingofpineapplz ~Ziyao7294 (minor edit)

Solution 2

This question seems very similar to quadratic residues and reciprocities. It is like Gauss's lemma in number theory or Euler's criterion. Let $c=\frac{2\pi}{p}$ where $p$ is an odd prime number and $q$ is any integer.

Then $\dfrac{\sin(qc)\sin(2qc)\ldots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\ldots\sin(\frac{p-1}{2}c)}$ is the Legendre symbol $\left(\frac{q}{p}\right)$. Legendre symbol is calculated using quadratic reciprocity which is $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$. The Legendre symbol $\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}$

https://empslocal.ex.ac.uk/people/staff/rjchapma/courses/nt13/Eisenstein.pdf

~Lopkiloinm

See Also

2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png