2021 IMO Problems/Problem 4


Let $\Gamma$ be a circle with centre $I$, and $ABCD$ a convex quadrilateral such that each of the segments $AB, BC, CD$ and $DA$ is tangent to $\Gamma$. Let $\Omega$ be the circumcircle of the triangle $AIC$. The extension of $BA$ beyond $A$ meets $\Omega$ at $X$, and the extension of $BC$ beyond $C$ meets $\Omega$ at $Z$. The extensions of $AD$ and $CD$ beyond $D$ meet $\Omega$ at $Y$ and $T$, respectively. Prove that \[AD + DT + T X + XA = CD + DY + Y Z + ZC\]

Video Solutions

https://www.youtube.com/watch?v=vUftJHRaNx8 [Video contains solutions to all day 2 problems]




Let $O$ be the centre of $\Omega$.

For $AB=BC$ the result follows simply. By Pitot's Theorem we have \[AB + CD = BC + AD\] so that, $AD = CD.$ The configuration becomes symmetric about $OI$ and the result follows immediately.

Now assume WLOG $AB < BC$. Then $T$ lies between $A$ and $X$ in the minor arc $AX$ and $Z$ lies between $Y$ and $C$ in the minor arc $YC$. Consider the cyclic quadrilateral $ACZX$. We have $\angle CZX = \angle CAB$ and $\angle IAC = \angle IZC$. So that, \[\angle CZX - \angle IZC = \angle CAB - \angle IAC\] \[\angle IZX = \angle IAB\] Since $I$ is the incenter of quadrilateral $ABCD$, $AI$ is the angular bisector of $\angle DBA$. This gives us, \[\angle IZX = \angle IAB = \angle IAD = \angle IAY\] Hence the chords $IX$ and $IY$ are equal. So $Y$ is the reflection of $X$ about $OI$. Hence, \[TX = YZ\] and now it suffices to prove \[AD + DT + XA = CD + DY + ZC\] Let $P, Q, N$ and $M$ be the tangency points of $\Gamma$ with $AB, BC, CD$ and $DA$ respectively. Then by tangents we have, $AD = AM + MD = AP + ND$. So $AD + DT + XA = AP + ND + DT + XA = XP + NT$. Similarly we get, $CD + DY + ZC = ZQ + YM$. So it suffices to prove, \[XP + NT = ZQ + YM\] Consider the tangent $XJ$ to $\Gamma$ with $J \ne P$. Since $X$ and $Y$ are reflections about $OI$ and $\Gamma$ is a circle centred at $I$ the tangents $XJ$ and $YM$ are reflections of each other. Hence \[XP = XJ = YM\] By a similar argument on the reflection of $T$ and $Z$ we get $NT = ZQ$ and finally, \[XP + NT = ZQ + YM\] as required. $QED$


Invalid username
Login to AoPS