Difference between revisions of "2021 JMPSC Accuracy Problems/Problem 15"

Line 12: Line 12:
 
We can easily find that <math>f(n+1)=10f(n)+25.</math> Using our inductive assumption, we obtain <cmath>\frac{f(n+1)}{25}=10 \cdot (19\underbrace{111 \cdots 1}_{n-1 \text{ ones}})+1=19 \cdot \underbrace{111 \cdots 1}_{n-1 \text{ ones}},</cmath> as desired. <math>\mathbb{Q.E.D.}</math>
 
We can easily find that <math>f(n+1)=10f(n)+25.</math> Using our inductive assumption, we obtain <cmath>\frac{f(n+1)}{25}=10 \cdot (19\underbrace{111 \cdots 1}_{n-1 \text{ ones}})+1=19 \cdot \underbrace{111 \cdots 1}_{n-1 \text{ ones}},</cmath> as desired. <math>\mathbb{Q.E.D.}</math>
  
~pinkpig, <math>\LaTeX</math>/wording fixes by samrocksnature
+
~Original by Mathdreams, edited by pinkpig, <math>\LaTeX</math>/wording fixes by samrocksnature
  
 
==Solution 2 (More Algebraic)==
 
==Solution 2 (More Algebraic)==

Revision as of 17:19, 11 July 2021

Problem

For all positive integers $n,$ define the function $f(n)$ to output $4\underbrace{777 \cdots 7}_{n\ \text{sevens}}5.$ For example, $f(1)=475$, $f(2)=4775$, and $f(3)=47775.$ Find the last three digits of \[\frac{f(1)+f(2)+ \cdots + f(100)}{25}.\]

Solution

We can easily find that $\tfrac{f(1)}{25}=19,\tfrac{f(2)}{25}=191,\tfrac{f(3)}{25}=1911,$ and so on. Thus, we claim$\text{}^*$ that \[\frac{f(n)}{25}=19\underbrace{111 \cdots 1}_{n-1 \text{ ones}}.\] Now, we find we can easily find that \[\frac{f(1)+f(2)+ \cdots + f(100)}{25}\equiv19+191+911+111 \cdot 97 \equiv 11888 \pmod{1000} \rightarrow \boxed{888}.\]



$\text{}^*$ We proceed by induction. Our base case is $\tfrac{f(1)}{25}=\tfrac{475}{25}=19.$ Our inductive assumption is \[\frac{f(n)}{25}=19\underbrace{111 \cdots 1}_{n-1 \text{ ones}},\] and we wish to prove that this pattern holds for $f(n+1).$

We can easily find that $f(n+1)=10f(n)+25.$ Using our inductive assumption, we obtain \[\frac{f(n+1)}{25}=10 \cdot (19\underbrace{111 \cdots 1}_{n-1 \text{ ones}})+1=19 \cdot \underbrace{111 \cdots 1}_{n-1 \text{ ones}},\] as desired. $\mathbb{Q.E.D.}$

~Original by Mathdreams, edited by pinkpig, $\LaTeX$/wording fixes by samrocksnature

Solution 2 (More Algebraic)

\[\sum_{n=1}^{100} f(n) = 5(100)+70(\underbrace{1+11+111+1111+ \cdots}_{\text{100 1s}}) + 100(44444 \cdots )\] We only care about the last $3$ digits, so we evaluate $1+11+111+1111+ \cdots$. Note the expression is simply $1(100)+10(99)+100(98)+1000(97)+ \cdots + 10^{100}$, so factoring a $10$ we have $1(10)+99+10(98)+ \cdots + 10^{99}$. Now, we can divide by $25$ to get \[20+28(1(10)+99+10(98)+100(97) \cdots)+4(444444 \cdots )\] Evaluate the last $3$ digits to get \[20+28(10+99+980+700)+4(444)=\boxed{888} \mod 1000\] $\linebreak$ ~Geometry285

See also

  1. Other 2021 JMPSC Sprint Problems
  2. 2021 JMPSC Sprint Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png