Difference between revisions of "2021 JMPSC Accuracy Problems/Problem 5"

 
Line 11: Line 11:
 
~Bradygho
 
~Bradygho
  
 +
== Solution 2 ==
 +
<cmath>\frac{120x}{2022}=20 \implies \frac{6x}{2022}=1 \implies x=337</cmath>
  
 +
- kante314 -
  
 
==See also==
 
==See also==

Latest revision as of 10:04, 12 July 2021

Problem

Let $n!=n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ for all positive integers $n$. Find the value of $x$ that satisfies \[\frac{5!x}{2022!}=\frac{20}{2021!}.\]

Solution

We can multiply both sides by $2022!$ to get rid of the fractions \[\frac{5!x}{2022!}=\frac{20}{2021!}\] \[5!x=20 \cdot 2022\] \[120x=(120)(337)\] \[x=\boxed{337}\]

~Bradygho

Solution 2

\[\frac{120x}{2022}=20 \implies \frac{6x}{2022}=1 \implies x=337\]

- kante314 -

See also

  1. Other 2021 JMPSC Accuracy Problems
  2. 2021 JMPSC Accuracy Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png

Invalid username
Login to AoPS