2021 JMPSC Accuracy Problems/Problem 6

Revision as of 17:53, 11 July 2021 by Samrocksnature (talk | contribs) (Solution 2)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In quadrilateral $ABCD$, diagonal $\overline{AC}$ bisects both $\angle BAD$ and $\angle BCD$. If $AB=15$ and $BC=13$, find the perimeter of $ABCD$.

Solution

Notice that since $\overline{AC}$ bisects a pair of opposite angles in quadrilateral $ABCD$, we can distinguish this quadrilateral as a kite.

$\linebreak$ With this information, we have that $\overline{AD}=\overline{AB}=15$ and $\overline{CD}=\overline{BC}=13$.

Therefore, the perimeter is \[15+15+13+13=\boxed{56}\] $\square$

$\linebreak$ ~Apple321


Solution 2

We note that triangle $ABC$ and $DAC$ are congruent due to $ASA$ congruency. Therefore, $AD + DC = 28$ and the perimeter of the quadrilateral is $28+28 = \boxed{56}$

~Grisham

See also

  1. Other 2021 JMPSC Accuracy Problems
  2. 2021 JMPSC Accuracy Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png

Invalid username
Login to AoPS