Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 3"

m (Solution)
Line 6: Line 6:
  
 
~Grisham
 
~Grisham
 +
 +
==See also==
 +
#[[2021 JMPSC Invitational Problems|Other 2021 JMPSC Invitational Problems]]
 +
#[[2021 JMPSC Invitational Answer Key|2021 JMPSC Invitational Answer Key]]
 +
#[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]]
 +
{{JMPSC Notice}}

Revision as of 17:26, 11 July 2021

Problem

There are exactly $5$ even positive integers less than or equal to $100$ that are divisible by $x$. What is the sum of all possible positive integer values of $x$?

Solution

$x$ must have exactly 5 even multiples less than $100$. We have two cases, either $x$ is odd or even. If $x$ is even, then $5x < 100 < 6x$. We solve the inequality to find $\frac{50}{3} \leq x \leq 20$, but since $x$ must be an integer we have x = 18, 20. If $x$ is odd, then we can set up the inequality $10x\leq100\leq12x$. Solving for the integers $x$ must be $9$. The sum is $18+20+9$ or $\boxed{47}$

~Grisham

See also

  1. Other 2021 JMPSC Invitational Problems
  2. 2021 JMPSC Invitational Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png

Invalid username
Login to AoPS