Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 8"

(Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
==Solution==
 
==Solution==
 
We let <math>a=(x+y)</math> and <math>b=(20x+21y)</math> to get the new system of equations <cmath>a^2b=12 \qquad (1)</cmath> <cmath>ab^2=18 \qquad(2).</cmath> Multiplying these two, we have <math>(ab)^3=12 \cdot 18</math> or <cmath>ab=6 \qquad (3).</cmath> We divide <math>(3)</math> by <math>(1)</math> to get <math>a=2</math> and divide <math>(2)</math> by <math>(1)</math> to get <math>b=3</math>. Recall that <math>a=x+y=2</math> and <math>b=20x+21y=3</math>. Solving the system of equations <cmath>x+y=2</cmath> <cmath>20x+21y=3,</cmath> we get <math>y=-37</math> and <math>x=39</math>. This means that <cmath>21x+20y=20x+21y+x-y=3+39-(-37)=\boxed{79}.</cmath> ~samrocksnature
 
We let <math>a=(x+y)</math> and <math>b=(20x+21y)</math> to get the new system of equations <cmath>a^2b=12 \qquad (1)</cmath> <cmath>ab^2=18 \qquad(2).</cmath> Multiplying these two, we have <math>(ab)^3=12 \cdot 18</math> or <cmath>ab=6 \qquad (3).</cmath> We divide <math>(3)</math> by <math>(1)</math> to get <math>a=2</math> and divide <math>(2)</math> by <math>(1)</math> to get <math>b=3</math>. Recall that <math>a=x+y=2</math> and <math>b=20x+21y=3</math>. Solving the system of equations <cmath>x+y=2</cmath> <cmath>20x+21y=3,</cmath> we get <math>y=-37</math> and <math>x=39</math>. This means that <cmath>21x+20y=20x+21y+x-y=3+39-(-37)=\boxed{79}.</cmath> ~samrocksnature
 +
 +
==Solution 2==
 +
Each number shares are factor of <math>6</math>, which means <math>(x+y)(20x+21y)=6</math>, or <math>x+y=2</math> and <math>20x+21y=3</math>. We see <math>y=-37</math> and <math>x=39</math>, so <math>39(21)-20(37)=\boxed{79}</math>
 +
 +
~Geometry285
 +
 +
== Solution 3 ==
 +
Multiplying the equations together, we get
 +
<cmath>(x+y)^3(20x+21y)^3=2^3 \cdot 3^3 \implies (x+y)(20x+21y)=6</cmath>Therefore,
 +
<cmath>x+y=2 \implies 20x+20y=40</cmath><cmath>20x+21y=3</cmath>Subtracting the equations, we get <math>y=-37</math> and <math>x=39</math>, therefore, <math>21 (39) - 20 (37) =\boxed{79}</math>
 +
 +
- kante314 -
 +
 +
==See also==
 +
#[[2021 JMPSC Invitationals Problems|Other 2021 JMPSC Invitationals Problems]]
 +
#[[2021 JMPSC Invitationals Answer Key|2021 JMPSC Invitationals Answer Key]]
 +
#[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]]
 +
{{JMPSC Notice}}

Latest revision as of 10:07, 12 July 2021

Problem

Let $x$ and $y$ be real numbers that satisfy \[(x+y)^2(20x+21y) = 12\] \[(x+y)(20x+21y)^2 = 18.\] Find $21x+20y$.

Solution

We let $a=(x+y)$ and $b=(20x+21y)$ to get the new system of equations \[a^2b=12 \qquad (1)\] \[ab^2=18 \qquad(2).\] Multiplying these two, we have $(ab)^3=12 \cdot 18$ or \[ab=6 \qquad (3).\] We divide $(3)$ by $(1)$ to get $a=2$ and divide $(2)$ by $(1)$ to get $b=3$. Recall that $a=x+y=2$ and $b=20x+21y=3$. Solving the system of equations \[x+y=2\] \[20x+21y=3,\] we get $y=-37$ and $x=39$. This means that \[21x+20y=20x+21y+x-y=3+39-(-37)=\boxed{79}.\] ~samrocksnature

Solution 2

Each number shares are factor of $6$, which means $(x+y)(20x+21y)=6$, or $x+y=2$ and $20x+21y=3$. We see $y=-37$ and $x=39$, so $39(21)-20(37)=\boxed{79}$

~Geometry285

Solution 3

Multiplying the equations together, we get \[(x+y)^3(20x+21y)^3=2^3 \cdot 3^3 \implies (x+y)(20x+21y)=6\]Therefore, \[x+y=2 \implies 20x+20y=40\]\[20x+21y=3\]Subtracting the equations, we get $y=-37$ and $x=39$, therefore, $21 (39) - 20 (37) =\boxed{79}$

- kante314 -

See also

  1. Other 2021 JMPSC Invitationals Problems
  2. 2021 JMPSC Invitationals Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png