Difference between revisions of "2021 JMPSC Invitationals Problems/Problem 8"

m
 
Line 12: Line 12:
  
 
~Geometry285
 
~Geometry285
 +
 +
== Solution 3 ==
 +
Multiplying the equations together, we get
 +
<cmath>(x+y)^3(20x+21y)^3=2^3 \cdot 3^3 \implies (x+y)(20x+21y)=6</cmath>Therefore,
 +
<cmath>x+y=2 \implies 20x+20y=40</cmath><cmath>20x+21y=3</cmath>Subtracting the equations, we get <math>y=-37</math> and <math>x=39</math>, therefore, <math>21 (39) - 20 (37) =\boxed{79}</math>
 +
 +
- kante314 -
  
 
==See also==
 
==See also==

Latest revision as of 10:07, 12 July 2021

Problem

Let $x$ and $y$ be real numbers that satisfy \[(x+y)^2(20x+21y) = 12\] \[(x+y)(20x+21y)^2 = 18.\] Find $21x+20y$.

Solution

We let $a=(x+y)$ and $b=(20x+21y)$ to get the new system of equations \[a^2b=12 \qquad (1)\] \[ab^2=18 \qquad(2).\] Multiplying these two, we have $(ab)^3=12 \cdot 18$ or \[ab=6 \qquad (3).\] We divide $(3)$ by $(1)$ to get $a=2$ and divide $(2)$ by $(1)$ to get $b=3$. Recall that $a=x+y=2$ and $b=20x+21y=3$. Solving the system of equations \[x+y=2\] \[20x+21y=3,\] we get $y=-37$ and $x=39$. This means that \[21x+20y=20x+21y+x-y=3+39-(-37)=\boxed{79}.\] ~samrocksnature

Solution 2

Each number shares are factor of $6$, which means $(x+y)(20x+21y)=6$, or $x+y=2$ and $20x+21y=3$. We see $y=-37$ and $x=39$, so $39(21)-20(37)=\boxed{79}$

~Geometry285

Solution 3

Multiplying the equations together, we get \[(x+y)^3(20x+21y)^3=2^3 \cdot 3^3 \implies (x+y)(20x+21y)=6\]Therefore, \[x+y=2 \implies 20x+20y=40\]\[20x+21y=3\]Subtracting the equations, we get $y=-37$ and $x=39$, therefore, $21 (39) - 20 (37) =\boxed{79}$

- kante314 -

See also

  1. Other 2021 JMPSC Invitationals Problems
  2. 2021 JMPSC Invitationals Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png

Invalid username
Login to AoPS