Difference between revisions of "2021 JMPSC Sprint Problems/Problem 20"

 
(One intermediate revision by the same user not shown)
Line 21: Line 21:
  
 
<math>257^3 = 16974593</math>, <math>256^2 = 65536</math>, and <math>257^2 = 66049</math>.
 
<math>257^3 = 16974593</math>, <math>256^2 = 65536</math>, and <math>257^2 = 66049</math>.
 +
 +
== Solution 3 ==
 +
Notice that <math>x=y+1</math>, substituting this in, we get <math>x^2(x+1)</math>. Therefore, <math>\sqrt{\frac{257^2(258)}{258}}=\boxed{257}</math>
 +
 +
- kante314 -
  
 
==See also==
 
==See also==

Latest revision as of 10:00, 12 July 2021

Problem

For all integers $x$ and $y$, define the operation $\Delta$ as \[x \Delta y = x^3+y^2+x+y.\] Find \[\sqrt{\dfrac{257 \Delta 256}{258}}.\]

Solution

Let $258=a$. Then, $257=a-1$ and $256=a-2$. We substitute these values into expression $(1)$ to get \[\sqrt{\frac{(a-1) \Delta (a-2)}{a}}.\] Recall the definition for the operation $\Delta$; using this, we simplify our expression to \[\sqrt{\frac{(a-1)^3+(a-2)^2+(a-1)+(a-2)}{a}}.\] We have $(a-1)^3=a^3-3a^2+3a-1$ and $(a-2)^2=a^2-4a+4$, so we can expand the numerator of the fraction within the square root as $a^3-3a^2+3a-1+a^2-4a+4+a-1+a-2=a^3-2a^2+a$ to get \[\sqrt{\frac{a^3-2a^2+a}{a}}=\sqrt{a^2-2a+1}=\sqrt{(a-1)^2}=a-1=\boxed{257}.\] ~samrocksnature


Solution 2

Basically the same as above, but instead we can let $257 = 256 + 1$. Then we have \[\sqrt{\frac{(256+1)(256^2 + 256 + 1) + 1(256^2 + 257) + 256}{258}},\] \[\sqrt{\frac{258(256^2 + 257) + 256}{258}},\] \[\sqrt{256^2 + 256 + 256 + 1} =\] \[\sqrt{256^2 + 2\cdot256 + 1} =\] \[\sqrt{(256+1)^2} =\] \[\sqrt{(257^2)}\]

which equals $\boxed{257}$.


~~abhinavg0627

Note:

$257^3 = 16974593$, $256^2 = 65536$, and $257^2 = 66049$.

Solution 3

Notice that $x=y+1$, substituting this in, we get $x^2(x+1)$. Therefore, $\sqrt{\frac{257^2(258)}{258}}=\boxed{257}$

- kante314 -

See also

  1. Other 2021 JMPSC Sprint Problems
  2. 2021 JMPSC Sprint Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png