Difference between revisions of "2022 AIME I Problems/Problem 13"

(Solution)
Line 2: Line 2:
  
 
Let <math>S</math> be the set of all rational numbers that can be expressed as a repeating decimal in the form <math>0.\overline{abcd},</math> where at least one of the digits <math>a,</math> <math>b,</math> <math>c,</math> or <math>d</math> is nonzero. Let <math>N</math> be the number of distinct numerators obtained when numbers in <math>S</math> are written as fractions in lowest terms. For example, both <math>4</math> and <math>410</math> are counted among the distinct numerators for numbers in <math>S</math> because <math>0.\overline{3636} = \frac{4}{11}</math> and <math>0.\overline{1230} = \frac{410}{3333}.</math> Find the remainder when <math>N</math> is divided by <math>1000.</math>
 
Let <math>S</math> be the set of all rational numbers that can be expressed as a repeating decimal in the form <math>0.\overline{abcd},</math> where at least one of the digits <math>a,</math> <math>b,</math> <math>c,</math> or <math>d</math> is nonzero. Let <math>N</math> be the number of distinct numerators obtained when numbers in <math>S</math> are written as fractions in lowest terms. For example, both <math>4</math> and <math>410</math> are counted among the distinct numerators for numbers in <math>S</math> because <math>0.\overline{3636} = \frac{4}{11}</math> and <math>0.\overline{1230} = \frac{410}{3333}.</math> Find the remainder when <math>N</math> is divided by <math>1000.</math>
 
==See Also==
 
{{AIME box|year=2022|n=I|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
  
 
==Solution==
 
==Solution==
Line 18: Line 14:
 
Case 5: 3, 11|x.  Then the least value of abcd is 11x, 3 values from 33 to 99.
 
Case 5: 3, 11|x.  Then the least value of abcd is 11x, 3 values from 33 to 99.
 
To sum up, it is <cmath>6000+334+55+3=6392</cmath>.
 
To sum up, it is <cmath>6000+334+55+3=6392</cmath>.
 +
 +
==See Also==
 +
{{AIME box|year=2022|n=I|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 22:37, 18 February 2022

Problem

Let $S$ be the set of all rational numbers that can be expressed as a repeating decimal in the form $0.\overline{abcd},$ where at least one of the digits $a,$ $b,$ $c,$ or $d$ is nonzero. Let $N$ be the number of distinct numerators obtained when numbers in $S$ are written as fractions in lowest terms. For example, both $4$ and $410$ are counted among the distinct numerators for numbers in $S$ because $0.\overline{3636} = \frac{4}{11}$ and $0.\overline{1230} = \frac{410}{3333}.$ Find the remainder when $N$ is divided by $1000.$

Solution

\[0.abcd=\frac{\overline{abcd}}{9999}\], \[9999=9\times 11\times 101\]. Then we need to find the number of positive integers less than 10000 can meet the requirement. Suppose the number is x. Case 1: (9999, x)=1. Clearly x satisfies. \[\varphi \left( 9999 \right) =9999\times \left( 1-\frac{1}{3} \right) \times \left( 1-\frac{1}{11} \right) \times \left( 1-\frac{1}{101} \right)=6000\] Case 2: 3|x but x is not a multiple of 11 or 101. Then the least value of abcd is 9x, so that \[x\le 1111\], 334 values from 3 to 1110. Case 3: 11|x but x is not a multiple of 3 or 101. Then the least value of abcd is 11x, so that \[x\le 909\], 55 values from 11 to 902. Case 4: 101|x. None. Case 5: 3, 11|x. Then the least value of abcd is 11x, 3 values from 33 to 99. To sum up, it is \[6000+334+55+3=6392\].

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png