2022 AMC 10B Problems/Problem 15

Revision as of 16:06, 17 November 2022 by Mathboy100 (talk | contribs) (Created page with "==Problem== Let <math>S_n</math> be the sum of the first <math>n</math> term of an arithmetic sequence that has a common difference of <math>2</math>. The quotient <math>\fra...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $S_n$ be the sum of the first $n$ term of an arithmetic sequence that has a common difference of $2$. The quotient $\frac{S_{3n}}{S_n}$ does not depend on $n$. What is $S_{20}$?

$\textbf{(A) } 340 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 380 \qquad \textbf{(D) } 400 \qquad \textbf{(E) } 420$

Solution

Suppose that the first number of the arithmetic sequence is $a$. We will try to compute the value of $S_{n}$. First, note that the sum of an arithmetic sequence is equal to the number of terms multiplied by the median of the sequence. The median of this sequence is equal to $a + n - 1$. Thus, the value of $S_{n}$ is $n(a + n - 1) = n^2 + n(a - 1)$. Then, \[\frac{S_{3n}}{S_{n}} = \frac{9n^2 + 3n(a - 1)}{n^2 + n(a - 1)} = 9 - \frac{6n(a-1)}{n^2 + n(a-1)}.\] Of course, for this value to be constant, $6n(a-1)$ must be $0$ for all values of $n$, and thus $a = 1$. Finally, the value of $S_{20}$ is $20^2 = \fbox{D. 400}$