2022 IMO Problems/Problem 4

Revision as of 18:34, 23 July 2022 by Vvsss (talk | contribs) (Problem)

Problem

Let $ABCDE$ be a convex pentagon such that $BC = DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB = TD$, $TC = TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P, B, A, Q$ occur on their line in that order. Let line $AE$ intersect lines $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R, E, A, S$ occur on their line in that order. Prove that the points $P, S, Q, R$ lie on a circle.

Solution

2022 IMO 4.png

\[TB = TD, TC = TE, BC = DE \implies \triangle TBC = \triangle TDE\] \[\implies \angle BTC = \angle DTE.\] \[\angle ABT = \angle TEA \implies  \triangle TQB \sim \triangle TSE \implies\] \[\frac {QT}{ST}= \frac {TB}{TE} \implies QT \cdot TC = ST \cdot TD \implies\] $CDQS$ is cyclic $\implies \angle QCD = \angle QSD.$ \[\angle QPR =\angle QPC = \angle QCD - \angle PQC =\] $\angle QSD - \angle EST =  \angle QSR \implies$ $PRQS$ is cyclic.

vladimir.shelomovskii@gmail.com, vvsss, www.deoma–cmd.ru

Solution

https://www.youtube.com/watch?v=-AII0ldyDww [Video contains solutions to all day 2 problems]