Difference between revisions of "Algebraic number"

m
Line 1: Line 1:
An '''algebraic number''' is a [[root]] of a [[polynomial]] with [[integer]] [[coefficient]]s. Examples include <math>\frac{1}{3}</math>, <math>\sqrt{2}+\sqrt{3}</math>, <math>i</math>, and <math>\frac{4+\sqrt[27]{19}}{\sqrt[3]{4}+\sqrt[7]{97}}</math>. A number that is not algebraic is called a [[transcendental number]]. Examples of transcendental numbers are <math>e</math> and <math>\pi</math>.
+
An '''algebraic number''' is a [[root]] of a [[polynomial]] with [[integer]] [[coefficient]]s. Examples include <math>\frac{1}{3}</math>, <math>\sqrt{2}+\sqrt{3}</math>, <math>\imath</math>, and <math>\frac{4+\sqrt[27]{19}}{\sqrt[3]{4}+\sqrt[7]{97}}</math>. A number that is not algebraic is called a [[transcendental number]]. Examples of transcendental numbers are <math>e</math> and <math>\pi</math>.
  
  

Revision as of 22:24, 30 October 2006

An algebraic number is a root of a polynomial with integer coefficients. Examples include $\frac{1}{3}$, $\sqrt{2}+\sqrt{3}$, $\imath$, and $\frac{4+\sqrt[27]{19}}{\sqrt[3]{4}+\sqrt[7]{97}}$. A number that is not algebraic is called a transcendental number. Examples of transcendental numbers are $e$ and $\pi$.


Number of algebraic numbers

Although it initially seems that the number of algebraic numbers is large, it turns out that there are only countably many of them. That is, the algebraic numbers have the same cardinality as the integers.


Algebraic numbers are studied extensively in algebraic number theory.

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS