Difference between revisions of "Angle bisector"
m 
(diagram) 

Line 8:  Line 8:  
<asy>  <asy>  
−  pair A,B,C,D;  +  import markers; 
+  pair A,B,C,D,E,F;  
B=(0,0);  B=(0,0);  
C=(5,0);  C=(5,0);  
A=(4,2);  A=(4,2);  
D=(3,4);  D=(3,4);  
+  E=(10/3,0);  
+  F=rotate(90,A)*(E);  
draw(ABCcycle,blue);  draw(ABCcycle,blue);  
draw(CD,blue);  draw(CD,blue);  
+  pen p=blue+0.15mm;  
+  draw(AF,p);  
dot(A^^B^^C,red);  dot(A^^B^^C,red);  
label("$A$",A,NE);  label("$A$",A,NE);  
label("$B$",B,W);  label("$B$",B,W);  
label("$C$",C,E);  label("$C$",C,E);  
+  markangle(n=1,radius=20,D,A,F,green);  
+  markangle(n=1,radius=22,F,A,B,green);  
</asy>  </asy>  
−  The  +  The external angle is defined by <math>\angle A + \text{ external }\angle A = 180^\circ</math>, and the two angle bisectors are perpendicular to each other. 
== Features of Angle Bisectors ==  == Features of Angle Bisectors ==  
Line 33:  Line 40:  
{{asy image<asy>  {{asy image<asy>  
−  +  size(300);  
pair excenter(pair A, pair B, pair C){  pair excenter(pair A, pair B, pair C){  
pair X, Z;  pair X, Z;  
Line 40:  Line 47:  
return extension(X,A,Z,C);  return extension(X,A,Z,C);  
}  }  
−  pair X=(0,0), Y=(10,0), Z=(3,6);  +  pair X=(0,0), Y=(10,0), Z=(3,6); 
pair exX=excenter(Z,X,Y), exY=excenter(X,Y,Z), exZ=excenter(Y,Z,X);  pair exX=excenter(Z,X,Y), exY=excenter(X,Y,Z), exZ=excenter(Y,Z,X);  
−  +  label("X",X,2*(1.5,1));label("Y",Y,2*(3,1));label("Z",Z,(0.6,2));  
−  +  dot(X^^Y^^Z);  
−  +  draw(0.3*(XY)+XY+0.3*(YX));draw(0.3*(YZ)+YZ+0.3*(ZY));draw(0.3*(XZ)+XZ+0.3*(ZX));  
−  draw((XY)+XY+  +  draw(X+0.3*(XexX)exX,orange);draw(Y+0.3*(YexY)exY,orange);draw(Z+0.3*(ZexZ)0.6*(exZZ)+Z,orange); 
−  +  pair I=extension(X,exX,Z,exZ);  
−  +  dot("I",I,(1,2));  
−  +  draw(circle(I,length(Ifoot(I,X,Y))),blue);  
−  
−  
−  
−  
−  
−  pair  
−  
−  
−  
−  
−  
−  
−  
−  
−  draw(  
−  
−  
</asy>centerTriangle <math>\triangle XYZ</math> with [[incenter]] ''I'', with [[angle bisector]]s (red), [[incircle]] (blue), and [[inradiusinradii]] (green)}}  </asy>centerTriangle <math>\triangle XYZ</math> with [[incenter]] ''I'', with [[angle bisector]]s (red), [[incircle]] (blue), and [[inradiusinradii]] (green)}}  
−  [[Image:Incenter.PNGleftthumb300pxTriangle ''  +  [[Image:Incenter.PNGleftthumb300pxTriangle ''XYZ'' with [[incenter]] ''I'', with [[angle bisector]]s (orange), [[incircle]] (blue), and [[external angle bisector]]s (green)]] 
==See also==  ==See also== 
Revision as of 01:19, 1 July 2020
This is an AoPSWiki Word of the Week for June 612 
For an angle , the (internal) angle bisector of is the line from B such that the angle between this line and is congruent to the angle between this line and :
A given angle also has an external angle bisector, which bisects external angle :
The external angle is defined by , and the two angle bisectors are perpendicular to each other.
Features of Angle Bisectors
 The distances from a point on an angle bisector to both of its sides are equal.
 The angle bisectors are the locus of points which are equidistant from the two sides of the angle.
 A reflection about either angle bisector maps the two sides of the angle to each other.
 In a triangle, the Angle Bisector Theorem gives the ratio in which the angle bisector cuts the opposite side.
 In a triangle, the internal angle bisectors (which are cevians) all intersect at the incenter of the triangle. The internal angle bisector of one angle and the external angle bisectors of the other two angles all intersect at an excenter of the triangle.
 A bisector of an angle can be constructed using a compass and straightedge.

Triangle with incenter I, with angle bisectors (red), incircle (blue), and inradii (green) 
See also
This article is a stub. Help us out by expanding it.