Difference between revisions of "AoPS Wiki talk:Problem of the Day/June 17, 2011"

m (No need for {{potd_solution}})
(Solution)
 
Line 3: Line 3:
 
==Solution==
 
==Solution==
  
<math> \frac{1^{3}+2^{3}+3^{3}+...+x^{3}}{1+2+3+...+x}=\frac{(1+2+3+...+x)^2}{1+2+3+...+x}=1+2+3+...+x</math>
+
<math> \frac{1^{3}+2^{3}+3^{3}+\cdots+x^{3}}{1+2+3+\cdots+x}=\frac{(1+2+3+\cdots+x)^2}{1+2+3+\cdots+x}=1+2+3+\cdots+x</math>
  
  
  
<math>1+2+3+...+x=\frac{x\cdot(x+1)}{2}</math> Subbing in the value of <math>x</math> we get,<math>\frac{9001\cdot9002}{2}=\boxed{40513501}</math>
+
<math>1+2+3+\cdots+x=\frac{x\cdot(x+1)}{2}</math> Subbing in the value of <math>x</math> we get,<math>\frac{9001\cdot9002}{2}=\boxed{40513501}</math>

Latest revision as of 13:12, 17 June 2011

Problem

AoPSWiki:Problem of the Day/June 17, 2011

Solution

$\frac{1^{3}+2^{3}+3^{3}+\cdots+x^{3}}{1+2+3+\cdots+x}=\frac{(1+2+3+\cdots+x)^2}{1+2+3+\cdots+x}=1+2+3+\cdots+x$


$1+2+3+\cdots+x=\frac{x\cdot(x+1)}{2}$ Subbing in the value of $x$ we get,$\frac{9001\cdot9002}{2}=\boxed{40513501}$