Difference between revisions of "AoPS Wiki talk:Problem of the Day/June 21, 2011"

(latex errors)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
==Solution==
+
==Solutions==
 +
=== First Solution ===
 
<math>(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26</math>.  Hence <math>(2x+3y)^2 \le 26</math> or <math>2x+3y = \sqrt{26}</math>.
 
<math>(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26</math>.  Hence <math>(2x+3y)^2 \le 26</math> or <math>2x+3y = \sqrt{26}</math>.
 
If <math>3x-2y=0</math> and <math>2x+3y=\sqrt{26}</math>, then <math>2x+3y</math> attains this maximum value on the circle <math>x^2+y^2=2</math>.
 
If <math>3x-2y=0</math> and <math>2x+3y=\sqrt{26}</math>, then <math>2x+3y</math> attains this maximum value on the circle <math>x^2+y^2=2</math>.
 +
=== Second Solution ===
 +
Let <math>x</math> and <math>y</math> be real numbers such that <math>x^2+y^2=2</math>. Note that
 +
<cmath>|x|^2+|y|^2=2 \text{ and } 2|x|+3|y|\ge 2x+3y</cmath>
 +
thus, we may assume that <math>x</math> and <math>y</math> are positive. Furthermore, by the [[Cauchy-Schwarz Inequality]], we have
 +
<cmath>(4+9)(x^2+y^2)\ge (2x+3y)^2</cmath>
 +
but since <math>x^2+y^2=2</math>, the inequality is equivalent with
 +
<cmath>26\ge (2x+3y)^2</cmath>
 +
or
 +
<cmath>\sqrt{26}\ge 2x+3y</cmath>
 +
so the maximum is <math>\boxed{\sqrt{26}}</math> and it is reached when <math>\frac{4}{x^2}=\frac{9}{y^2}\implies 2y=3x</math>.

Revision as of 10:28, 21 June 2011

Problem

AoPSWiki:Problem of the Day/June 21, 2011

Solutions

First Solution

$(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26$. Hence $(2x+3y)^2 \le 26$ or $2x+3y = \sqrt{26}$. If $3x-2y=0$ and $2x+3y=\sqrt{26}$, then $2x+3y$ attains this maximum value on the circle $x^2+y^2=2$.

Second Solution

Let $x$ and $y$ be real numbers such that $x^2+y^2=2$. Note that \[|x|^2+|y|^2=2 \text{ and } 2|x|+3|y|\ge 2x+3y\] thus, we may assume that $x$ and $y$ are positive. Furthermore, by the Cauchy-Schwarz Inequality, we have \[(4+9)(x^2+y^2)\ge (2x+3y)^2\] but since $x^2+y^2=2$, the inequality is equivalent with \[26\ge (2x+3y)^2\] or \[\sqrt{26}\ge 2x+3y\] so the maximum is $\boxed{\sqrt{26}}$ and it is reached when $\frac{4}{x^2}=\frac{9}{y^2}\implies 2y=3x$.