Difference between revisions of "Binomial Theorem"

(Usage)
Line 2: Line 2:
 
<center><math>(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k</math></center>
 
<center><math>(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k</math></center>
  
where <math>\binom{n}{k} = \frac{n!}{k!(n-k)!}</math> is a [[binomial coefficient]].  This result has a nice [[combinatorial proof]]: <math>(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>. Repeatedly using the [[distributive property]], we see that for a term <math>a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>a^m b^{n-m}</math> is <math>\binom{m}{n}</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{k=0}^{n}{\binom{n}{k}}\cdot a^k\cdot b^{n-k}</math>.
+
where <math>\binom{n}{k} = \frac{n!}{k!(n-k)!}</math> is a [[binomial coefficient]].  In other words, the coefficients when <math>(a + b)^n</math> is expanded and like terms are collected are the same as the entries in the <math>n</math>th row of [[Pascal's Triangle]].
 +
 
 +
For example, <math>(a + b)^5 = a^5 + 5 a^4 b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a b^4 + b^5</math>, with coefficients <math>1 = \binom{5}{0}</math>, <math>5 = \binom{5}{1}</math>, <math>10 = \binom{5}{2}</math>, etc.
 +
 
 +
==Proofs==
 +
There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of [[mathematical induction]].  The Binomial Theorem also has a nice [[combinatorial proof]]: we can write <math>(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>. Repeatedly using the [[distributive property]], we see that for a term <math>a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>a^m b^{n-m}</math> is the number of ways to choose <math>m</math> objects from a set of size <math>n</math>, or <math>\binom{n}{m}</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{m=0}^{n}{\binom{n}{m}}\cdot a^m\cdot b^{n-m}</math>, as claimed.
  
 
==Generalizations==
 
==Generalizations==
Line 15: Line 20:
 
==Usage==
 
==Usage==
 
Many [[factoring | factorizations]] involve complicated [[polynomial]]s with [[binomial coefficient]]s. For example, if a contest problem involved the polynomial <math>x^5+4x^4+6x^3+4x^2+x</math>, one could factor it as such: <math> x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}</math>. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.
 
Many [[factoring | factorizations]] involve complicated [[polynomial]]s with [[binomial coefficient]]s. For example, if a contest problem involved the polynomial <math>x^5+4x^4+6x^3+4x^2+x</math>, one could factor it as such: <math> x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}</math>. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.
 
In addition, the expansion of a polynomial such as <math>(x+y)^n</math> will have coefficients corresponding to the <math>nth</math> row of [[Pascal's Triangle]]. For example, <math>(x+1)^5</math> = <math>x^5+5x^4+10x^3+10x^2+5x+1</math>, and the integers <math>1</math>, <math>5</math>, <math>10</math>, <math>10</math>, <math>5</math>, and <math>1</math> make up the 5th row of Pascal's Triangle.
 
  
 
==See also==
 
==See also==

Revision as of 22:08, 17 December 2009

The Binomial Theorem states that for real or complex $a$, $b$, and non-negative integer $n$,

$(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is a binomial coefficient. In other words, the coefficients when $(a + b)^n$ is expanded and like terms are collected are the same as the entries in the $n$th row of Pascal's Triangle.

For example, $(a + b)^5 = a^5 + 5 a^4 b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a b^4 + b^5$, with coefficients $1 = \binom{5}{0}$, $5 = \binom{5}{1}$, $10 = \binom{5}{2}$, etc.

Proofs

There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of mathematical induction. The Binomial Theorem also has a nice combinatorial proof: we can write $(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}$. Repeatedly using the distributive property, we see that for a term $a^m b^{n-m}$, we must choose $m$ of the $n$ terms to contribute an $a$ to the term, and then each of the other $n-m$ terms of the product must contribute a $b$. Thus, the coefficient of $a^m b^{n-m}$ is the number of ways to choose $m$ objects from a set of size $n$, or $\binom{n}{m}$. Extending this to all possible values of $m$ from $0$ to $n$, we see that $(a+b)^n = \sum_{m=0}^{n}{\binom{n}{m}}\cdot a^m\cdot b^{n-m}$, as claimed.

Generalizations

The Binomial Theorem was generalized by Isaac Newton, who used an infinite series to allow for complex exponents: For any real or complex $a$, $b$, and $r$,

$(a+b)^r = \sum_{k=0}^{\infty}\binom{r}{k}a^{r-k}b^k$.

Proof

Consider the function $f(b)=(a+b)^r$ for constants $a,r$. It is easy to see that $\frac{d^k}{db^k}f=r(r-1)\cdots(r-k+1)(a+b)^{r-k}$. Then, we have $\frac{d^k}{db^k}f(0)=r(r-1)\cdots(r-k+1)a^{r-k}$. So, the Taylor series for $f(b)$ centered at $0$ is

\[(a+b)^k=\sum_{k=0}^\infty \frac{r(r-1)\cdots(r-k+1)a^{r-k}b^k}{k!}=\sum_{k=0}^\infty \binom{r}{k}a^{r-k}b^k.\]

Usage

Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial $x^5+4x^4+6x^3+4x^2+x$, one could factor it as such: $x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}$. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.

See also