# Difference between revisions of "Binomial Theorem"

(→Proofs) |
|||

Line 7: | Line 7: | ||

==Proofs== | ==Proofs== | ||

− | There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of [[mathematical induction]]. The Binomial Theorem also has a nice | + | There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of [[mathematical induction]]. The Binomial Theorem also has a nice combinatorial proof: |

+ | |||

+ | We can write <math>(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>. Repeatedly using the [[distributive property]], we see that for a term <math>a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>a^m b^{n-m}</math> is the number of ways to choose <math>m</math> objects from a set of size <math>n</math>, or <math>\binom{n}{m}</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{m=0}^{n}{\binom{n}{m}}\cdot a^m\cdot b^{n-m}</math>, as claimed. | ||

==Generalizations== | ==Generalizations== |

## Revision as of 15:53, 17 August 2013

The **Binomial Theorem** states that for real or complex , , and non-negative integer ,

where is a binomial coefficient. In other words, the coefficients when is expanded and like terms are collected are the same as the entries in the th row of Pascal's Triangle.

For example, , with coefficients , , , etc.

## Contents

## Proofs

There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of mathematical induction. The Binomial Theorem also has a nice combinatorial proof:

We can write . Repeatedly using the distributive property, we see that for a term , we must choose of the terms to contribute an to the term, and then each of the other terms of the product must contribute a . Thus, the coefficient of is the number of ways to choose objects from a set of size , or . Extending this to all possible values of from to , we see that , as claimed.

## Generalizations

The Binomial Theorem was generalized by Isaac Newton, who used an infinite series to allow for complex exponents: For any real or complex , , and ,

### Proof

Consider the function for constants . It is easy to see that . Then, we have . So, the Taylor series for centered at is

## Usage

Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial , one could factor it as such: . It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.