Difference between revisions of "Cauchy-Schwarz Inequality"

(Whoever wrote the upper bound section clearly put a lot of effort into it --- however, it's way too advanced for this wiki. Might work better in a handout or on Wikipedia)
(Integral inequality is too advanced for this wiki)
Line 67: Line 67:
 
<math>0\le||a||^2-\frac{\langle a,b\rangle|^2}{||b||^2}</math>
 
<math>0\le||a||^2-\frac{\langle a,b\rangle|^2}{||b||^2}</math>
 
<math>\implies\langle a,b\rangle|^2\le||a||^2||b||^2=\langle a,a\rangle\cdot\langle b,b\rangle</math>. <math>\square</math>
 
<math>\implies\langle a,b\rangle|^2\le||a||^2||b||^2=\langle a,a\rangle\cdot\langle b,b\rangle</math>. <math>\square</math>
 
=== Examples ===
 
 
The elementary form of the Cauchy-Schwarz inequality is a special case of the general form, as is the '''Cauchy-Schwarz Inequality for Integrals''': for integrable functions <math> f,g : [a,b] \mapsto \mathbb{R} </math>,
 
<cmath>
 
\biggl( \int_{a}^b f(x)g(x)dx \biggr)^2 \le \int_{a}^b \bigl[ f(x) \bigr]^2dx \cdot \int_a^b \bigl[ g(x) \bigr]^2 dx
 
</cmath>
 
with equality when there exist constants <math> \mu, \lambda </math> not both equal to zero such that for <math> t \in [a,b] </math>,
 
<cmath>
 
\mu \int_a^t f(x)dx = \lambda \int_a^t g(x)dx .
 
</cmath>
 
  
 
==Problems==
 
==Problems==

Revision as of 22:56, 4 February 2022

In algebra, the Cauchy-Schwarz Inequality, also known as the Cauchy–Bunyakovsky–Schwarz Inequality or informally as Cauchy-Schwarz, is an inequality with many ubiquitous formulations in abstract algebra, calculus, and contest mathematics. In high-school competitions, its applications are limited to elementary and linear algebra.

Its elementary algebraic formulation is often referred to as Cauchy's Inequality and states that for any list of reals $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$, \[(a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) \geq (a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2,\] with equality if and only if there exists a constant $t$ such that $a_n = t b_n$ for all $1 \leq t \leq n$, or if every number in one of the lists is zero. Along with the AM-GM Inequality, Cauchy-Schwarz forms the foundation for inequality problems in intermediate and olympiad competitions. It is particularly crucial in proof-based contests.

Its linear algebraic forulation states that for any vectors $\overrightarrow{v}$ and $\overrightarrow{w}$ in $\mathbb{R}^n$, \[(\overrightarrow{v} \cdot \overrightarrow{v})(\overrightarrow{w} \cdot \overrightarrow{w}) \geq |\overrightarrow{v} \cdot \overrightarrow{w}|^2, \textrm{ or equivalently}, \textrm{ } \|\overrightarrow{v}\| \|\overrightarrow{w}\| \geq |\overrightarrow{v} \cdot \overrightarrow{w}|\] with equality if and only if there exists a scalar $t$ such that $\overrightarrow{v} = t \overrightarrow{w}$, or if one of the vectors is zero. This formulation comes in handy in linear algebra problems at intermediate and olympiad problems.

The full Cauchy-Schwarz Inequality is written in terms of abstract vector spaces. Under this formulation, the elementary algebraic, linear algebraic, and calculus formulations are different cases of the general inequality.

Proof

Consider the vectors $\mathbf{a} = \langle a_1, \ldots a_n \rangle$ and ${} \mathbf{b} = \langle b_1, \ldots b_n \rangle$. If $\theta$ is the angle formed by $\mathbf{a}$ and $\mathbf{b}$, then the left-hand side of the inequality is equal to the square of the dot product of $\mathbf{a}$ and $\mathbf{b}$, or $(\mathbf{a} \cdot \mathbf{b})^2 = a^2 b^2 (\cos\theta) ^2$ .The right hand side of the inequality is equal to $\left( ||\mathbf{a}|| * ||\mathbf{b}|| \right)^2  =  a^2b^2$. The inequality then follows from $|\cos\theta | \le 1$, with equality when one of $\mathbf{a,b}$ is a multiple of the other, as desired.

Lemmas

Complex Form

The inequality sometimes appears in the following form.

Let $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$ be complex numbers. Then \[\left| \sum_{i=1}^na_ib_i \right|^2 \le \left(\sum_{i=1}^{n}|a_i^2| \right) \left( \sum_{i=1}^n |b_i^2| \right)\] This appears to be more powerful, but it follows from \[\left| \sum_{i=1}^n a_ib_i \right| ^2 \le \left( \sum_{i=1}^n |a_i| \cdot |b_i| \right)^2 \le \left(\sum_{i=1}^n |a_i^2| \right) \left( \sum_{i=1}^n |b_i^2| \right)\]

General Form

Let $V$ be a vector space, and let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be an inner product. Then for any $\mathbf{a,b} \in V$, \[\langle \mathbf{a,b} \rangle^2 \le \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle ,\] with equality if and only if there exist constants $\mu, \lambda$ not both zero such that $\mu\mathbf{a} = \lambda\mathbf{b}$.

Proof 1

Consider the polynomial of $t$ \[\langle t\mathbf{a + b}, t\mathbf{a + b} \rangle = t^2\langle \mathbf{a,a} \rangle + 2t\langle \mathbf{a,b} \rangle + \langle \mathbf{b,b} \rangle .\] This must always be greater than or equal to zero, so it must have a non-positive discriminant, i.e., $\langle \mathbf{a,b} \rangle^2$ must be less than or equal to $\langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle$, with equality when $\mathbf{a = 0}$ or when there exists some scalar $-t$ such that $-t\mathbf{a} = \mathbf{b}$, as desired.

Proof 2

We consider \[\langle \mathbf{a-b, a-b} \rangle = \langle \mathbf{a,a} \rangle + \langle \mathbf{b,b} \rangle - 2 \langle \mathbf{a,b} \rangle .\] Since this is always greater than or equal to zero, we have \[\langle \mathbf{a,b} \rangle \le \frac{1}{2} \langle \mathbf{a,a} \rangle + \frac{1}{2} \langle \mathbf{b,b} \rangle .\] Now, if either $\mathbf{a}$ or $\mathbf{b}$ is equal to $\mathbf{0}$, then $\langle \mathbf{a,b} \rangle^2 = \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle = 0$. Otherwise, we may normalize so that $\langle \mathbf {a,a} \rangle = \langle \mathbf{b,b} \rangle = 1$, and we have \[\langle \mathbf{a,b} \rangle \le 1 = \langle \mathbf{a,a} \rangle^{1/2} \langle \mathbf{b,b} \rangle^{1/2} ,\] with equality when $\mathbf{a}$ and $\mathbf{b}$ may be scaled to each other, as desired.

Proof 3

Consider $a-\lambda b$ for some scalar $\lambda$. Then: $0\le||a-\lambda b||^2$ (by the Trivial Inequality) $=\langle a-\lambda b,a-\lambda b\rangle$ $=\langle a,a\rangle-2\lambda\langle a,b\rangle+\lambda^2\langle y,y\rangle$ $=||a||^2-2\lambda\langle a,b\rangle+\lambda^2||b||^2$. Now, let $\lambda=\frac{\langle a,b\rangle}{||b||^2}$. Then, we have: $0\le||a||^2-\frac{\langle a,b\rangle|^2}{||b||^2}$ $\implies\langle a,b\rangle|^2\le||a||^2||b||^2=\langle a,a\rangle\cdot\langle b,b\rangle$. $\square$

Problems

Introductory

  • Consider the function $f(x)=\frac{(x+k)^2}{x^2+1},x\in (-\infty,\infty)$, where $k$ is a positive integer. Show that $f(x)\le k^2+1$. (Source)
  • (APMO 1991 #3) Let $a_1$, $a_2$, $\cdots$, $a_n$, $b_1$, $b_2$, $\cdots$, $b_n$ be positive real numbers such that $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$. Show that

\[\frac {a_1^2}{a_1 + b_1} + \frac {a_2^2}{a_2 + b_2} + \cdots + \frac {a_n^2}{a_n + b_n} \geq \frac {a_1 + a_2 + \cdots + a_n}{2}\]

Intermediate

  • Let $ABC$ be a triangle such that

\[\left( \cot \frac{A}{2} \right)^2 + \left( 2 \cot \frac{B}{2} \right)^2 + \left( 3 \cot \frac{C}{2} \right)^2 = \left( \frac{6s}{7r} \right)^2 ,\] where $s$ and $r$ denote its semiperimeter and inradius, respectively. Prove that triangle $ABC$ is similar to a triangle $T$ whose side lengths are all positive integers with no common divisor and determine those integers. (Source)

Olympiad

  • $P$ is a point inside a given triangle $ABC$. $D, E, F$ are the feet of the perpendiculars from $P$ to the lines $BC, CA, AB$, respectively. Find all $P$ for which

\[\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}\] is least.

(Source)

Other Resources

Books