Combinatorial identity

Revision as of 19:09, 29 August 2006 by Bictor717 (talk | contribs) (Hockey-Stick Identity)

This article is a stub. Help us out by expanding it.

Hockey-Stick Identity

For $n,r\in\mathbb{N}, n>r,\sum^n_{i=r}{i\choose r}={n+1\choose r+1}$.

This identity is known as the hockey-stick identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself are highlighted, a hockey-stick shape is revealed.


This identity can be proven by induction on $n$.

Base case Let $n=r$.

$\sum^n_{i=r}{i\choose r}=\sum^r_{i=r}{i\choose r}={r\choose r}=1={r+1\choose r+1}$.

Inductive step Suppose, for some $k\in\mathbb{N}, k>r$, $\sum^k_{i=r}{i\choose r}={k+1\choose r+1}$. Then $\sum^{k+1}_{i=r}{i\choose r}=\left(\sum^k_{i=r}{i\choose r}\right)+{k+1\choose r}={k+1\choose r+1}+{k+1\choose r}={k+2\choose r+1}$.

Vandermonde's Identity


See also

Invalid username
Login to AoPS