Difference between revisions of "Complex conjugate"

(Properties)
(Properties)
Line 6: Line 6:
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
 
* <math>\overline{(\overline z)} = z</math>
 
* <math>\overline{(\overline z)} = z</math>
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(w \cdot z)}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})})
+
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(w \cdot z)}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})})</math>
* </math>\overline{(w + z)} = \overline{w} + \overline{z}<math> (</math>\overline{(w + z)}<math> is the same as </math>\overline{(w + (-z))})
+
* <math>\overline{(w + z)} = \overline{w} + \overline{z}</math> (<math>\overline{(w + z)}</math> is the same as <math>\overline{(w + (-z))})
It also interacts in simple ways with other operations on <math>\mathbb{C}</math>:
+
It also interacts in simple ways with other operations on </math>\mathbb{C}<math>:
* <math>|\overline{z}| = |z|</math>
+
* </math>|\overline{z}| = |z|<math>
* <math>\overline{z}\cdot z = |z|^2</math>
+
* </math>\overline{z}\cdot z = |z|^2<math>
* If <math>z = r\cdot e^{it}</math> for <math>r, t \in \mathbb{R}</math>, <math>\overline z = r\cdot e^{-it}</math>.  That is, <math>\overline z</math> is the complex number of same [[absolute value]] but opposite [[argument]] of <math>z</math>.
+
* If </math>z = r\cdot e^{it}<math> for </math>r, t \in \mathbb{R}<math>, </math>\overline z = r\cdot e^{-it}<math>.  That is, </math>\overline z<math> is the complex number of same [[absolute value]] but opposite [[argument]] of </math>z<math>.
* <math>z + \overline z = 2 \mathrm{Re}(z)</math> where <math>\mathrm{Re}(z)</math> is the [[real part]] of <math>z</math>.
+
* </math>z + \overline z = 2 \mathrm{Re}(z)<math> where </math>\mathrm{Re}(z)<math> is the [[real part]] of </math>z<math>.
* <math>z - \overline{z} = 2i \mathrm{Im}(z)</math> where <math>\mathrm{Im}(z)</math> is the [[imaginary part]] of <math>z</math>.
+
* </math>z - \overline{z} = 2i \mathrm{Im}(z)<math> where </math>\mathrm{Im}(z)<math> is the [[imaginary part]] of </math>z$.
  
  
 
{{stub}}
 
{{stub}}
 
[[Category:Number Theory]]
 
[[Category:Number Theory]]

Revision as of 10:57, 4 December 2007

The complex conjugate of a complex number $z = a + bi$ is the complex number $\overline{z} = a - bi$.

Geometrically, if $z$ is a point in the complex plane, $\overline z$ is the reflection of $z$ across the real axis.

Properties

Conjugation is its own functional inverse and commutes with the usual operations on complex numbers:

  • $\overline{(\overline z)} = z$
  • $\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}$ ($\overline{(w \cdot z)}$ is the same as $\overline{(w \cdot \frac{1}{z})})$
  • $\overline{(w + z)} = \overline{w} + \overline{z}$ ($\overline{(w + z)}$ is the same as $\overline{(w + (-z))}) It also interacts in simple ways with other operations on$\mathbb{C}$: *$|\overline{z}| = |z|$*$\overline{z}\cdot z = |z|^2$* If$z = r\cdot e^{it}$for$r, t \in \mathbb{R}$,$\overline z = r\cdot e^{-it}$.  That is,$\overline z$is the complex number of same [[absolute value]] but opposite [[argument]] of$z$. *$z + \overline z = 2 \mathrm{Re}(z)$where$\mathrm{Re}(z)$is the [[real part]] of$z$. *$z - \overline{z} = 2i \mathrm{Im}(z)$where$\mathrm{Im}(z)$is the [[imaginary part]] of$z$.


This article is a stub. Help us out by expanding it.