Difference between revisions of "Complex conjugate"

(Properties)
(Properties)
Line 5: Line 5:
 
==Properties==
 
==Properties==
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
 
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers:
* <math>\overline{(\overline z)} = z</math>
+
* <math>\overline{(\overline z)} = z</math>.
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(\frac{w}{z})}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})}</math>)
+
* <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math>. (<math>\overline{(\frac{w}{z})}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})}</math>)
* <math>\overline{(w + z)} = \overline{w} + \overline{z}</math> (<math>\overline{(w + z)}</math> is the same as <math>\overline{(w + (-z))}</math>)
+
* <math>\overline{(w + z)} = \overline{w} + \overline{z}</math>. (<math>\overline{(w + z)}</math> is the same as <math>\overline{(w + (-z))}</math>)
 
It also interacts in simple ways with other operations on <math>\mathbb{C}</math>:
 
It also interacts in simple ways with other operations on <math>\mathbb{C}</math>:
* <math>|\overline{z}| = |z|</math>
+
* <math>|\overline{z}| = |z|</math>.
* <math>\overline{z}\cdot z = |z|^2</math>
+
* <math>\overline{z}\cdot z = |z|^2</math>.
 
* If <math>z = r\cdot e^{it}</math> for <math>r, t \in \mathbb{R}</math>, <math>\overline z = r\cdot e^{-it}</math>.  That is, <math>\overline z</math> is the complex number of same [[absolute value]] but opposite [[argument]] of <math>z</math>.
 
* If <math>z = r\cdot e^{it}</math> for <math>r, t \in \mathbb{R}</math>, <math>\overline z = r\cdot e^{-it}</math>.  That is, <math>\overline z</math> is the complex number of same [[absolute value]] but opposite [[argument]] of <math>z</math>.
 
* <math>z + \overline z = 2 \mathrm{Re}(z)</math> where <math>\mathrm{Re}(z)</math> is the [[real part]] of <math>z</math>.
 
* <math>z + \overline z = 2 \mathrm{Re}(z)</math> where <math>\mathrm{Re}(z)</math> is the [[real part]] of <math>z</math>.

Revision as of 10:59, 4 December 2007

The complex conjugate of a complex number $z = a + bi$ is the complex number $\overline{z} = a - bi$.

Geometrically, if $z$ is a point in the complex plane, $\overline z$ is the reflection of $z$ across the real axis.

Properties

Conjugation is its own functional inverse and commutes with the usual operations on complex numbers:

  • $\overline{(\overline z)} = z$.
  • $\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}$. ($\overline{(\frac{w}{z})}$ is the same as $\overline{(w \cdot \frac{1}{z})}$)
  • $\overline{(w + z)} = \overline{w} + \overline{z}$. ($\overline{(w + z)}$ is the same as $\overline{(w + (-z))}$)

It also interacts in simple ways with other operations on $\mathbb{C}$:


This article is a stub. Help us out by expanding it.