Difference between revisions of "De Moivre's Theorem"

m (Proof)
(12 intermediate revisions by 7 users not shown)
Line 1: Line 1:
DeMoivre's Theorem is a very useful theorem in the mathematical fields of [[Complex Numbers]]. It states that:
+
'''DeMoivre's Theorem''' is a very useful theorem in the mathematical fields of [[complex numbers]]. It allows complex numbers in [[polar form]] to be easily raised to certain powers. It states that for <math>x\in\mathbb{R}</math> and <math>n\in\mathbb{Z}</math>, <math>\left(\cos x+i\sin x\right)^n=\cos(nx)+i\sin(nx)</math>.
  
<math>\left(\cos x+i\sin x\right)^n=\cos(nx)+i\sin(nx)</math>
+
== Proof ==
 +
This is one proof of De Moivre's theorem by [[induction]].
  
 +
*If <math>n>0</math>, for <math>n=1</math>, the case is obviously true.
  
== Proof ==
+
:Assume true for the case <math>n=k</math>. Now, the case of <math>n=k+1</math>:
This is one proof of DeMoivre's theorem by Mathematical Induction.
 
  
=== If <math>n>0</math> ===
+
:[[Image:DeMoivreInductionP1.gif]]
==== Part 1 ====
 
For <math>n=1</math>, the case is obviously true.
 
  
==== Part 2 ====
+
:Therefore, the result is true for all positive integers <math>n</math>.
Assume true for the case <math>n=k</math>.
 
  
==== Part 3 ====
+
*If <math>n=0</math>, the formula holds true because <math>\cos(0x)+i\sin (0x)=1+i0=1</math>. Since <math>z^0=1</math>, the equation holds true.
Now, the case of <math>n=k+1</math>.
 
  
[[Image:DeMoivreInductionP1.gif]]
+
*If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer.
  
Therefore, the result is true for all positive integers <math>n</math>.
+
:[[Image:DeMoivreInductionP2.gif]]
  
=== If <math>n=0</math> ===
+
And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math>
The formula holds true when <math>n=0</math> because <math>\cos(0x)+i\sin (0x)=1+i0=1</math>. Since <math>z^0=1</math>, the equation holds true.
 
  
=== If <math>n<0</math> ===
+
Note that from the functional equation <math>f(x)^n = f(nx)</math> where <math>f(x) = \cos x + i\sin x</math>, we see that <math>f(x)</math> behaves like an exponential function. Indeed, [[Euler's identity]] states that <math>e^{ix} = \cos x+i\sin x</math>. This extends De Moivre's theorem to all <math>n\in \mathbb{R}</math>.
If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer.
 
  
Therefore:
+
==Generalization==
  
[[Image:DeMoivreInductionP2.gif]]
 
  
And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math>
+
[[Category:Theorems]]
 +
[[Category:Complex numbers]]

Revision as of 05:04, 29 April 2018

DeMoivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for $x\in\mathbb{R}$ and $n\in\mathbb{Z}$, $\left(\cos x+i\sin x\right)^n=\cos(nx)+i\sin(nx)$.

Proof

This is one proof of De Moivre's theorem by induction.

  • If $n>0$, for $n=1$, the case is obviously true.
Assume true for the case $n=k$. Now, the case of $n=k+1$:
DeMoivreInductionP1.gif
Therefore, the result is true for all positive integers $n$.
  • If $n=0$, the formula holds true because $\cos(0x)+i\sin (0x)=1+i0=1$. Since $z^0=1$, the equation holds true.
  • If $n<0$, one must consider $n=-m$ when $m$ is a positive integer.
DeMoivreInductionP2.gif

And thus, the formula proves true for all integral values of $n$. $\Box$

Note that from the functional equation $f(x)^n = f(nx)$ where $f(x) = \cos x + i\sin x$, we see that $f(x)$ behaves like an exponential function. Indeed, Euler's identity states that $e^{ix} = \cos x+i\sin x$. This extends De Moivre's theorem to all $n\in \mathbb{R}$.

Generalization