Difference between revisions of "Divisibility rules/Rule 1 for 13 proof"

m
m
Line 2: Line 2:
  
 
== Proof ==
 
== Proof ==
 +
''An understanding of [[Introduction to modular arithmetic | basic modular arithmetic]] is necessary for this proof.''
 +
 
Let <math>N = d_0\cdot10^0 + d_1\cdot 10^1 +d_2\cdot 10^2 + \cdots</math> be a positive integer with units digit <math>d_0</math>, tens digit <math>d_1</math> and so on.  Then <math>k=d_110^0+d_210^1+d_310^2+\cdots</math> is the result of truncating the last digit from <math>N</math>.  Note that <math>N = 10k + d_0 \equiv d_0 - 3k \pmod {13}</math>.  Now <math>N \equiv 0 \pmod {13}</math> if and only if <math>4N \equiv 0 \pmod {13}</math>, so <math>n \equiv 0 \pmod{13}</math> if and only if <math>4d_0 - 12k \equiv 0 \pmod{13}</math>.  But <math>-12k \equiv k \pmod{13}</math>, and the result follows.
 
Let <math>N = d_0\cdot10^0 + d_1\cdot 10^1 +d_2\cdot 10^2 + \cdots</math> be a positive integer with units digit <math>d_0</math>, tens digit <math>d_1</math> and so on.  Then <math>k=d_110^0+d_210^1+d_310^2+\cdots</math> is the result of truncating the last digit from <math>N</math>.  Note that <math>N = 10k + d_0 \equiv d_0 - 3k \pmod {13}</math>.  Now <math>N \equiv 0 \pmod {13}</math> if and only if <math>4N \equiv 0 \pmod {13}</math>, so <math>n \equiv 0 \pmod{13}</math> if and only if <math>4d_0 - 12k \equiv 0 \pmod{13}</math>.  But <math>-12k \equiv k \pmod{13}</math>, and the result follows.
  
 
== See also ==
 
== See also ==
 
[[Divisibility rules | Back to divisibility rules]]
 
[[Divisibility rules | Back to divisibility rules]]

Revision as of 12:42, 17 June 2008

To test if a number $N$ is divisible by 13, then take off the last digit, multiply it by 4 and add it to the rest of the number. If this new number is divisible by 13, then so is $n$. This process can be repeated for large numbers, as with the second divisibility rule for 7.

Proof

An understanding of basic modular arithmetic is necessary for this proof.

Let $N = d_0\cdot10^0 + d_1\cdot 10^1 +d_2\cdot 10^2 + \cdots$ be a positive integer with units digit $d_0$, tens digit $d_1$ and so on. Then $k=d_110^0+d_210^1+d_310^2+\cdots$ is the result of truncating the last digit from $N$. Note that $N = 10k + d_0 \equiv d_0 - 3k \pmod {13}$. Now $N \equiv 0 \pmod {13}$ if and only if $4N \equiv 0 \pmod {13}$, so $n \equiv 0 \pmod{13}$ if and only if $4d_0 - 12k \equiv 0 \pmod{13}$. But $-12k \equiv k \pmod{13}$, and the result follows.

See also

Back to divisibility rules