Difference between revisions of "Euler's Totient Theorem"

(headers)
Line 1: Line 1:
=== Statement ===
+
'''Euler's Totient Theorem''' is a theorem closely related to his [[totient function|function of the same name]].
  
 +
== Theorem ==
 
Let <math>\phi(n)</math> be [[Euler's totient function]]. If <math>{a}</math> is an integer and <math>m</math> is a positive integer [[relatively prime]] to <math>a</math>, then <math>{a}^{\phi (m)}\equiv 1 \pmod {m}</math>.
 
Let <math>\phi(n)</math> be [[Euler's totient function]]. If <math>{a}</math> is an integer and <math>m</math> is a positive integer [[relatively prime]] to <math>a</math>, then <math>{a}^{\phi (m)}\equiv 1 \pmod {m}</math>.
  
=== Credit ===
+
== Credit ==
  
 
This theorem is credited to [[Leonhard Euler]].  It is a generalization of [[Fermat's Little Theorem]], which specifies that <math>{m}</math> is prime. For this reason it is known as Euler's generalization and Fermat-Euler as well.
 
This theorem is credited to [[Leonhard Euler]].  It is a generalization of [[Fermat's Little Theorem]], which specifies that <math>{m}</math> is prime. For this reason it is known as Euler's generalization and Fermat-Euler as well.
  
=== See also ===
+
== See also ==
  
 
* [[Number theory]]
 
* [[Number theory]]

Revision as of 18:01, 24 November 2007

Euler's Totient Theorem is a theorem closely related to his function of the same name.

Theorem

Let $\phi(n)$ be Euler's totient function. If ${a}$ is an integer and $m$ is a positive integer relatively prime to $a$, then ${a}^{\phi (m)}\equiv 1 \pmod {m}$.

Credit

This theorem is credited to Leonhard Euler. It is a generalization of Fermat's Little Theorem, which specifies that ${m}$ is prime. For this reason it is known as Euler's generalization and Fermat-Euler as well.

See also