# Difference between revisions of "Fermat's Little Theorem"

## Contents

### Statement

If ${a}$ is an integer and ${p}$ is a prime number, then $a^{p-1}\equiv 1 \pmod {p}$.

Note: This theorem is a special case of Euler's Totient Theorem.

### Corollary

A frequently used corolary of Fermat's little theorem is $a^p \equiv a \pmod {p}$. As you can see, it is derived by multipling both sides of the theorem by a.

### Sample Problem

One of Euler's conjectures was disproved in then 1960s by three American mathematicians when they showed there was a positive integer such that $133^5+110^5+84^5+27^5=n^5$. Find the value of ${n}$. (AIME 1989 #9)

By Fermat's Little Theorem, we know ${n^{5}}$ is congruent to $n$ modulo 5. Hence, $3 + 0 + 4 + 7 \equiv n\pmod{5}$ $4 \equiv n\pmod{5}$

Continuing, we examine the equation modulo 3, $-1 + 1 + 0 + 0 \equiv n\pmod{3}$ $0 \equiv n\pmod{3}$

Thus, $n$ is divisible by three and leaves a remainder of four when divided by 5. It's obvious that $n>133$ so the only possibilities are $n = 144$ or $n = 174$. It quickly becomes apparent that 174 is much too large so $n$ must be 144.

### Credit

This theorem is credited to Pierre de Fermat.