Difference between revisions of "Harmonic series"

m (Harmonic Series)
Line 16: Line 16:
 
=== Harmonic Series ===
 
=== Harmonic Series ===
  
It can be shown that the harmonic series converges by grouping the terms.  We know that the first term, 1, added to the second term, <math>\frac{1}{2}</math> is greater than <math>\frac{1}{2}</math>.  We also know that the third and and fourth terms, <math>\frac{1}{3}</math> and <math>\frac{1}{4}</math>, add up to something greater than <math>\frac{1}{2}</math>.  And we continue grouping the terms between powers of two.  So we have  
+
It can be shown that the harmonic series diverges by grouping the terms.  We know that the first term, 1, added to the second term, <math>\frac{1}{2}</math> is greater than <math>\frac{1}{2}</math>.  We also know that the third and and fourth terms, <math>\frac{1}{3}</math> and <math>\frac{1}{4}</math>, add up to something greater than <math>\frac{1}{2}</math>.  And we continue grouping the terms between powers of two.  So we have  
 
<math>\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots \ge \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \to \infty</math>
 
<math>\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots \ge \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \to \infty</math>
  

Revision as of 20:10, 17 March 2009

Generally, a harmonic series is a series whose terms involve the reciprocals of the positive integers.

There are several sub-types of harmonic series.

The the most basic harmonic series is the infinite sum $\displaystyle\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ This sum slowly approaches infinity.

The alternating harmonic series, $\displaystyle\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ , though, approaches $\displaystyle \ln 2$.

The zeta-function is a harmonic series when the input is one.

How to solve

Harmonic Series

It can be shown that the harmonic series diverges by grouping the terms. We know that the first term, 1, added to the second term, $\frac{1}{2}$ is greater than $\frac{1}{2}$. We also know that the third and and fourth terms, $\frac{1}{3}$ and $\frac{1}{4}$, add up to something greater than $\frac{1}{2}$. And we continue grouping the terms between powers of two. So we have $\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots \ge \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \to \infty$

Alternating Harmonic Series

General Harmonic Series

$\displaystyle\sum_{i=1}^{\infty}\frac{1}{ai +b}$ is the general harmonic series, where each term is the reciprocal of a term in an arithmetic series.

Case 1: $a\ge b$

$ai+a\ge ai+b$

$\frac{1}{ai+b}\ge\frac{1}{ai+a}=\frac{1}{a}\left(\frac{1}{i+1}\right)$

$\sum_{i=1}^{\infty}\frac{1}{ai+b}\ge\frac{1}{a} \left(\sum_{i=1}^{\infty}\frac{1}{i+1}\right)\to\infty$

Case 2: $a<b$

$ai+b<bi+b$

$\frac{1}{ai+b}>\frac{1}{bi+b}=\frac{1}{b}\left(\frac{1}{i+1}\right)$

$\sum_{i=1}^{\infty}\frac{1}{ai+b}\ge\frac{1}{b} \left(\sum_{i=1}^{\infty}\frac{1}{i+1}\right)\to\infty$

Thus, $\sum_{i=1}^{\infty}\frac{1}{ai+b}=\infty$