Difference between revisions of "Imaginary part"

m
m
 
(One intermediate revision by one other user not shown)
Line 8: Line 8:
  
 
==Examples==
 
==Examples==
 
 
* <math>\mathrm{Im}(3 + 4i) = 4</math>
 
* <math>\mathrm{Im}(3 + 4i) = 4</math>
  
* <math>\mathrm{Im}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 4 \sin \frac \pi 6 = 2</math>
+
* <math>\mathrm{Im}\left(4\left(\cos \frac \pi6 + i \sin \frac\pi 6\right)\right) = 4 \sin \frac \pi 6 = 2</math>
  
* <math>\mathrm{Im}(4e^{\frac {\pi i}6}) = \mathrm{Im}(4(\cos \frac \pi6 + i \sin \frac\pi 6)) = 2</math>
+
* <math>\mathrm{Im}\left(4e^{\frac {\pi i}6}\right) = \mathrm{Im}\left(4\left(\cos \frac \pi6 + i \sin \frac\pi 6\right)\right) = 2</math>
  
 
* <math>\mathrm{Im}((1 + i)\cdot(2 + i)) = \mathrm{Im}(1 + 3i) = 3</math>.  Note in particular that <math>\mathrm Im</math> is ''not'' in general a [[multiplicative function]], <math>\mathrm{Im}(w\cdot z) \neq \mathrm{Im}(w) \cdot \mathrm{Im}(z)</math> for arbitrary complex numbers <math>w, z</math>.
 
* <math>\mathrm{Im}((1 + i)\cdot(2 + i)) = \mathrm{Im}(1 + 3i) = 3</math>.  Note in particular that <math>\mathrm Im</math> is ''not'' in general a [[multiplicative function]], <math>\mathrm{Im}(w\cdot z) \neq \mathrm{Im}(w) \cdot \mathrm{Im}(z)</math> for arbitrary complex numbers <math>w, z</math>.
 
 
  
 
==See Also==
 
==See Also==
 
 
* [[Real part]]
 
* [[Real part]]
 
  
 
[[Category:Algebra]]
 
[[Category:Algebra]]
 +
[[Category:Complex numbers]]

Latest revision as of 15:56, 5 September 2008

Any complex number $z$ can be written in the form $z = a + bi$ where $i = \sqrt{-1}$ is the imaginary unit and $a$ and $b$ are real numbers. Then the imaginary part of $z$, usually denoted $\Im (z)$ or $\mathrm{Im} (z)$, is just the value $b$. Note in particular that the imaginary part of every complex number is real.

Geometrically, if a complex number is plotted in the complex plane, its imaginary part is its $y$-coordinate (ordinate).

A complex number $z$ is real exactly when $\mathrm{Im}(z) = 0$.

The function $\mathrm{Im}$ can also be defined in terms of the complex conjugate $\overline z$ of $z$: $\mathrm{Im}(z) = \frac{z - \overline z}{2i}$. (Recall that if $z = a + bi$, $\overline z = a - bi$).

Examples

  • $\mathrm{Im}(3 + 4i) = 4$
  • $\mathrm{Im}\left(4\left(\cos \frac \pi6 + i \sin \frac\pi 6\right)\right) = 4 \sin \frac \pi 6 = 2$
  • $\mathrm{Im}\left(4e^{\frac {\pi i}6}\right) = \mathrm{Im}\left(4\left(\cos \frac \pi6 + i \sin \frac\pi 6\right)\right) = 2$

See Also