Difference between revisions of "Inradius"

m
 
(Proof)
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The '''inradius''' of a [[polygon]] is the [[radius]] of its [[incircle]] (assuming an incircle exists).
+
The '''inradius''' of a [[polygon]] is the [[radius]] of its [[incircle]] (assuming an incircle exists). It is commonly denoted <math>r</math>.
 +
 
 +
<center><asy>
 +
pathpen = linewidth(0.7);
 +
pair A=(0,0),B=(4,0),C=(1.5,2),I=incenter(A,B,C),F=foot(I,A,B);
 +
D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(CR(D(MP("I",I,SW)),inradius(A,B,C))); D(F--I--foot(I,B,C)--I--foot(I,C,A)); D(rightanglemark(I,F,B,5)); MP("r",(F+I)/2,E);
 +
</asy></center>
 +
 
 +
== A Property ==
 +
*If <math>\triangle ABC</math> has inradius <math>r</math> and [[semi-perimeter]] <math>s</math>, then the [[area]] of <math>\triangle ABC</math> is <math>rs</math>. This formula holds true for other polygons if the incircle exists.
 +
=Proof=
 +
Add in the incircle and drop the altitudes from the incenter to the sides of the triangle. Also draw the lines <math>\overline{AI}, \overline{BI}</math>, and <math>\overline{CI}</math>. After this AB, AC, and BC are the bases of <math>\triangle{AIB}, {AIC}</math>, and <math>{BIC}</math> respectively. But they all have the same height(the inradius), so <math>[ABC]=\frac{(a+b+c) \times r}{2} =rs</math>.
 +
 
 +
== Problems ==
 +
*Verify the inequality <math>R \geq 2r</math>.
 +
*Verify the identity <math>\cos{A}+\cos{B}+\cos{C}=\frac{r+R}{R}</math> (see [[Carnot's Theorem]]).
 +
*[[2007 AIME II Problems/Problem 15]]
 +
 
 +
{{stub}}
 +
 
 +
[[Category:Geometry]]

Revision as of 17:03, 22 November 2016

The inradius of a polygon is the radius of its incircle (assuming an incircle exists). It is commonly denoted $r$.

[asy] pathpen = linewidth(0.7); pair A=(0,0),B=(4,0),C=(1.5,2),I=incenter(A,B,C),F=foot(I,A,B); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(CR(D(MP("I",I,SW)),inradius(A,B,C))); D(F--I--foot(I,B,C)--I--foot(I,C,A)); D(rightanglemark(I,F,B,5)); MP("r",(F+I)/2,E); [/asy]

A Property

  • If $\triangle ABC$ has inradius $r$ and semi-perimeter $s$, then the area of $\triangle ABC$ is $rs$. This formula holds true for other polygons if the incircle exists.

Proof

Add in the incircle and drop the altitudes from the incenter to the sides of the triangle. Also draw the lines $\overline{AI}, \overline{BI}$, and $\overline{CI}$. After this AB, AC, and BC are the bases of $\triangle{AIB}, {AIC}$, and ${BIC}$ respectively. But they all have the same height(the inradius), so $[ABC]=\frac{(a+b+c) \times r}{2} =rs$.

Problems

This article is a stub. Help us out by expanding it.