Difference between revisions of "Isomorphism"

(Better to use category theory terminology)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{WotWAnnounce|week=March 12-19}}
+
An '''isomorphism''' is a [[bijective]] [[homomorphism]] whose inverse is also homomorphism.  If <math>A</math> and <math>B</math> are objects in a certain [[Category (category theory)|category]] such that there exists an isomorphism <math>A\to B</math>, then <math>A</math> and <math>B</math> are said to be '''isomorphic'''.  Informally speaking, two isomorphic objects can be considered to be two superficially different versions of the same object.  Isomorphic objects cannot be distinguished by universal mapping properties.
An '''isomorphism''' is a [[bijective]] [[homomorphism]].  If <math>A</math> and <math>B</math> are objects in a certain category such that there exists an isomorphism <math>A\to B</math>, then <math>A</math> and <math>B</math> are said to be '''isomorphic'''.  Informally speaking, two isomorphic objects can be considered as two superficially different versions of the same object.  Isomorphic objects cannot be distinguished by Universal Mapping Properties.
 
  
  
Line 6: Line 5:
  
 
[[Category:Abstract algebra]]
 
[[Category:Abstract algebra]]
 +
[[Category:Category theory]]

Latest revision as of 21:13, 2 September 2008

An isomorphism is a bijective homomorphism whose inverse is also homomorphism. If $A$ and $B$ are objects in a certain category such that there exists an isomorphism $A\to B$, then $A$ and $B$ are said to be isomorphic. Informally speaking, two isomorphic objects can be considered to be two superficially different versions of the same object. Isomorphic objects cannot be distinguished by universal mapping properties.


This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS