Difference between revisions of "Law of Tangents"

 
m (Proof)
(12 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<math>\frac{a-b}{a+b}=\frac{\tan(a-b)}{\tan(a+b)}</math>
+
The '''Law of Tangents''' is a rather obscure [[trigonometric identity]] that is sometimes used in place of its better-known counterparts, the [[law of sines]] and [[law of cosines]], to calculate [[angle]]s or sides in a [[triangle]].
 +
 
 +
== Statement ==
 +
 
 +
If <math>A</math> and <math>B</math> are angles in a triangle opposite sides <math>a</math> and <math>b</math> respectively, then
 +
<cmath> \frac{a-b}{a+b}=\frac{\tan [\frac{1}{2}(A-B)]}{\tan [\frac{1}{2}(A+B)]} . </cmath>
 +
 
 +
== Proof ==
 +
 
 +
Let <math>s</math> and <math>d</math> denote <math>(A+B)/2</math>, <math>(A-B)/2</math>, respectively. By the [[Law of Sines]],
 +
<cmath> \frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B} = \frac{ \sin(s+d) - \sin (s-d)}{\sin(s+d) + \sin(s-d)} . </cmath>
 +
By the angle addition identities,
 +
<cmath> \frac{\sin(s+d) - \sin(s-d)}{\sin(s+d) + \sin(s-d)} = \frac{2\cos s \sin d}{2\sin s \cos d} = \frac{\tan d}{\tan s} = \frac{\tan [\frac{1}{2} (A-B)]}{\tan[ \frac{1}{2} (A+B)]} </cmath>
 +
as desired.  <math>\square</math>
 +
 
 +
==Problems==
 +
===Introductory===
 +
{{problem}}
 +
===Intermediate===
 +
In <math>\triangle ABC</math>, let <math>D</math> be a point in <math>BC</math> such that <math>AD</math> bisects <math>\angle A</math>. Given that <math>AD=6,BD=4</math>, and <math>DC=3</math>, find <math>AB</math>.
 +
<div align="right">([[Mu Alpha Theta]] 1991)</div>
 +
===Olympiad===
 +
Show that <math>[ABC]=r^2\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}</math>.
 +
 
 +
<div align="right">(AoPS Vol. 2)</div>
 +
==See Also==
 +
* [[Trigonometry]]
 +
* [[Trigonometric identities]]
 +
* [[Law of Sines]]
 +
* [[Law of Cosines]]
 +
 
 +
[[Category:Theorems]]
 +
[[Category:Trigonometry]]

Revision as of 17:49, 2 March 2017

The Law of Tangents is a rather obscure trigonometric identity that is sometimes used in place of its better-known counterparts, the law of sines and law of cosines, to calculate angles or sides in a triangle.

Statement

If $A$ and $B$ are angles in a triangle opposite sides $a$ and $b$ respectively, then \[\frac{a-b}{a+b}=\frac{\tan [\frac{1}{2}(A-B)]}{\tan [\frac{1}{2}(A+B)]} .\]

Proof

Let $s$ and $d$ denote $(A+B)/2$, $(A-B)/2$, respectively. By the Law of Sines, \[\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B} = \frac{ \sin(s+d) - \sin (s-d)}{\sin(s+d) + \sin(s-d)} .\] By the angle addition identities, \[\frac{\sin(s+d) - \sin(s-d)}{\sin(s+d) + \sin(s-d)} = \frac{2\cos s \sin d}{2\sin s \cos d} = \frac{\tan d}{\tan s} = \frac{\tan [\frac{1}{2} (A-B)]}{\tan[ \frac{1}{2} (A+B)]}\] as desired. $\square$

Problems

Introductory

This problem has not been edited in. If you know this problem, please help us out by adding it.

Intermediate

In $\triangle ABC$, let $D$ be a point in $BC$ such that $AD$ bisects $\angle A$. Given that $AD=6,BD=4$, and $DC=3$, find $AB$.

Olympiad

Show that $[ABC]=r^2\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$.

(AoPS Vol. 2)

See Also