Linear equation

Revision as of 18:30, 4 June 2015 by Greenpepper9999 (talk | contribs) (Form and Connection to Analytic Geometry)

In elementary algebra, linear equations are algebraic equations in which both sides of the equation are polynomials or monomials of the first degree - i.e. each term does not have any variables to a power other than one.

Form and Connection to Analytic Geometry

In general, a linear equation with $n$ variables can be written in the form $\sum_{i=1}^{n}a_ib_i=c$, where $a_i$ is a series of constants, $b_i$ is a series of variables, and $c$ is a constant.

In other words, a linear equation is an equation that can be written in the form \[a_1b_1 + a_2b_2 + ... +a_nb_n = c\], where $a_1, a_2,... , a_n$ are constants multiplied by variables $b_1, b_2, ..., b_n$ and $c$ is a constant.

For the particular case $n=1$ (single variable equation), the resulting equation can be graphed as a point on the number line, and for the case $n=2$ (resulting in a linear function), it can be graphed as a line on the Cartesian plane, hence the term "linear" equation. This can extended to a general Cartesian n-space, in which the linear equation with the corresponding number of variables can be graphed as an n-1-space - this concept is the idea behind analytic geometry as envisioned by Fermat and Descartes.

Systems, solutions and methods of solving

Variable Elimination

Matrices and Cramer's Law

See Also

Invalid username
Login to AoPS