Difference between revisions of "Lucas' Theorem"

m (Proof)
Line 19: Line 19:
 
* [[Combinatorics]]
 
* [[Combinatorics]]
 
* [[Generating function]]
 
* [[Generating function]]
 +
 +
[[Category:Theorems]]

Revision as of 14:26, 8 November 2007

Let $p$ be a prime. If $(\overline{n_mn_{m-1}\cdots n_0})_p$ is the base $p$ representation of $n$ and $(\overline{i_mi_{m-1}\cdots i_0})_p$ is the base $p$ representation of $i$, where $n\geq i$, Lucas' Theorem states that \[\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}\]

Proof

Lemma

For $p$ prime and $x,r\in\mathbb{Z}$, \[(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}\]

Proof

For all $1\leq k \leq p-1$, $\binom{p}{k}\equiv 0 \pmod{p}$. Then we have that

$\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\ &\equiv& 1+x^p\pmod{p}\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Assume we have $(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}$. Then

$\begin{eqnarray*}(1+x)^{p^{k+1}}

&\equiv&\left((1+x)^{p^k}\right)^p\\ &\equiv&\left(1+x^{p^k}\right)^p\\ &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\

&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Links

See also