# Difference between revisions of "MIE 2016"

(Created page with "===Problem 1=== Choose the correct answer. (a) <math>\sqrt{2016}-\sqrt{2015}<\sqrt{2017}-\sqrt{2016}<(2\sqrt{2016})^{-1}</math> (b) <math>\sqrt{2017}-\sqrt{2016}<\sqrt{2016}...") |
m |
||

Line 1: | Line 1: | ||

+ | Note: Anyone that solve any of the problems can post your solutions. | ||

+ | |||

===Problem 1=== | ===Problem 1=== | ||

Choose the correct answer. | Choose the correct answer. | ||

Line 164: | Line 166: | ||

(e) <math>5</math> | (e) <math>5</math> | ||

+ | |||

+ | |||

+ | |||

+ | {{stub}} |

## Revision as of 17:03, 7 January 2018

Note: Anyone that solve any of the problems can post your solutions.

## Contents

### Problem 1

Choose the correct answer.

(a)

(b)

(c)

(d)

(e)

### Problem 2

The following system has integer solutions. We can say that:

(a)

(b)

(c)

(d)

(e)

### Problem 3

Let and be complex numbers such that is a pure imaginary number and . For any values of and that satisfies these conditions we have:

(a)

(b)

(c)

(d)

(e)

### Problem 4

In the expansion of

the independent term (in other words, the term without ) is equal to . With being a real number such that and , the value of is:

(a)

(b)

(c)

(d)

(e)

### Problem 5

Compute , knowing that .

(a)

(b)

(c)

(d)

(e)

### Problem 6

Let be with . We know that . The sum of the values of that satisfies this condition is:

(a)

(b)

(c)

(d)

(e)

Note: is the determinant of the matrix .

### Problem 7

The product of the real roots of the following equation is equal to:

(a)

(b)

(c)

(d)

(e)

### Problem 8

Let . The minimum value of is in the interval:

(a)

(b)

(c)

(d)

(e)

### Problem 9

Let , and be complex numbers that satisfies the following system:

Compute .

(a)

(b)

(c)

(d)

(e)

### Problem 10

A hexagon is divided into 6 equilateral triangles. How many ways can we put the numbers from 1 to 6 in each triangle, without repetition, such that the sum of the numbers of three adjacent triangles is always a multiple of 3? Solutions obtained by rotation or reflection are differents, thus the following figures represent two distinct solutions.

(a)

(b)

(c)

(d)

(e)

### Problem 11

Let be an arithmetic progression and , an geometric progression of integer terms, of ratio and , respectively, where and are positive integers, with and . We also know that and . The value of is:

(a)

(b)

(c)

(d)

(e)

*This article is a stub. Help us out by expanding it.*