# Difference between revisions of "Midpoint"

Twod horse (talk | contribs) |
Twod horse (talk | contribs) (→Medians) |
||

(7 intermediate revisions by the same user not shown) | |||

Line 1: | Line 1: | ||

== Definition == | == Definition == | ||

− | + | In [[Euclidean geometry]], the '''midpoint''' of a [[line segment]] is the [[point]] on the segment equidistant from both endpoints. | |

A midpoint [[bisect]]s the line segment that the midpoint lies on. Because of this property, we say that for any line segment <math>\overline{AB}</math> with midpoint <math>M</math>, <math>AM=BM=\frac{1}{2}AB</math>. Alternatively, any point <math>M</math> on <math>\overline{AB}</math> such that <math>AM=BM</math> is the midpoint of the segment. | A midpoint [[bisect]]s the line segment that the midpoint lies on. Because of this property, we say that for any line segment <math>\overline{AB}</math> with midpoint <math>M</math>, <math>AM=BM=\frac{1}{2}AB</math>. Alternatively, any point <math>M</math> on <math>\overline{AB}</math> such that <math>AM=BM</math> is the midpoint of the segment. | ||

Line 13: | Line 13: | ||

label("Figure 1",(2,0),4S); | label("Figure 1",(2,0),4S); | ||

</asy> | </asy> | ||

+ | |||

== Midpoints and Triangles == | == Midpoints and Triangles == | ||

<asy> | <asy> | ||

Line 45: | Line 46: | ||

CA &= 2ED \\ | CA &= 2ED \\ | ||

\end{align*}</cmath> | \end{align*}</cmath> | ||

− | Which is the Triangle Midsegment Theorem. Because we have a relationship between these segment lengths, <math>\Delta ABC \sim \Delta EFD (SSS)</math> with similar ratio 2:1. The area ratio is then 4:1; this tells us | + | Which is the Triangle Midsegment Theorem. Because we have a relationship between these segment lengths, <math>\Delta ABC \sim \Delta EFD (SSS)</math> with similar ratio 2:1. The area ratio is then 4:1; this tells us |

<cmath>\begin{align*} | <cmath>\begin{align*} | ||

[ABC] &= 4[EFD] | [ABC] &= 4[EFD] | ||

\end{align*}</cmath> | \end{align*}</cmath> | ||

+ | |||

+ | === Medians === | ||

+ | The [[median of a triangle]] is defined as one of the three line segments connecting a midpoint to its opposite vertex. As for the case of Figure 2, the medians are <math>\overline{AE}</math>, <math>\overline{BF}</math>, and <math>\overline{CD}</math>, segments highlighted in red. | ||

+ | |||

+ | These three line segments are [[concurrent]] at point <math>G</math>, which is otherwise known as the [[centroid]]. This concurrence can be proven through many ways, one of which involves the most simple usage of [[Ceva's Theorem]]. A median is always within its triangle. | ||

+ | |||

+ | The centroid is one of the points that trisect a median. For a median in any triangle, the ratio of the median's length from vertex to centroid and centroid to the base is always 2:1. | ||

+ | |||

+ | For right triangles, the median to the hypotenuse always equals to half the length of the hypotenuse. | ||

+ | |||

+ | For equilateral triangles, its median to one side is the same as the angle bisector and altitude. It can be calculated as <math>\frac{\sqrt3}{2}s</math>, where <math>s</math> denotes its side length. | ||

+ | |||

== Cartesian Plane == | == Cartesian Plane == | ||

In the Cartesian Plane, the coordinates of the midpoint <math>M</math> can be obtained when the two endpoints <math>A</math>, <math>B</math> of the line segment <math>\overline{AB}</math> is known. Say that <math>A: A(x_A,y_A)</math> and <math>B: B(x_B,y_B)</math>. The Midpoint Formula states that the coordinates of <math>M</math> can be calculated as: | In the Cartesian Plane, the coordinates of the midpoint <math>M</math> can be obtained when the two endpoints <math>A</math>, <math>B</math> of the line segment <math>\overline{AB}</math> is known. Say that <math>A: A(x_A,y_A)</math> and <math>B: B(x_B,y_B)</math>. The Midpoint Formula states that the coordinates of <math>M</math> can be calculated as: | ||

Line 56: | Line 69: | ||

== See Also == | == See Also == | ||

* [[Bisect]] | * [[Bisect]] | ||

+ | * [[Median of a triangle]] | ||

{{stub}} | {{stub}} |

## Latest revision as of 22:10, 24 February 2021

## Contents

## Definition

In Euclidean geometry, the **midpoint** of a line segment is the point on the segment equidistant from both endpoints.

A midpoint bisects the line segment that the midpoint lies on. Because of this property, we say that for any line segment with midpoint , . Alternatively, any point on such that is the midpoint of the segment.

## Midpoints and Triangles

### Midsegments

As shown in Figure 2, is a triangle with , , midpoints on , , respectively. Connect , , (segments highlighted in green). They are midsegments to their corresponding sides. Using SAS Similarity Postulate, we can see that and likewise for and . Because of this, we know that Which is the Triangle Midsegment Theorem. Because we have a relationship between these segment lengths, with similar ratio 2:1. The area ratio is then 4:1; this tells us

### Medians

The median of a triangle is defined as one of the three line segments connecting a midpoint to its opposite vertex. As for the case of Figure 2, the medians are , , and , segments highlighted in red.

These three line segments are concurrent at point , which is otherwise known as the centroid. This concurrence can be proven through many ways, one of which involves the most simple usage of Ceva's Theorem. A median is always within its triangle.

The centroid is one of the points that trisect a median. For a median in any triangle, the ratio of the median's length from vertex to centroid and centroid to the base is always 2:1.

For right triangles, the median to the hypotenuse always equals to half the length of the hypotenuse.

For equilateral triangles, its median to one side is the same as the angle bisector and altitude. It can be calculated as , where denotes its side length.

## Cartesian Plane

In the Cartesian Plane, the coordinates of the midpoint can be obtained when the two endpoints , of the line segment is known. Say that and . The Midpoint Formula states that the coordinates of can be calculated as:

## See Also

*This article is a stub. Help us out by expanding it.*