Mock AIME 1 2013 Problems

Revision as of 17:51, 6 May 2013 by JoetheFixer (talk | contribs) (Problem 2)

Problem 1

Two circles $C_1$ and $C_2$, each of unit radius, have centers $A_1$ and $A_2$ such that $A_1A_2=6$. Let $P$ be the midpoint of $A_1A_2$ and let $C_#$ (Error compiling LaTeX. ! Missing { inserted.) be a circle externally tangent to both $C_1$ and $C_2$. $C_1$ and $C_3$ have a common tangent that passes through $P$. If this tangent is also a common tangent to $C_2$ and $C_1$, find the radius of circle $C_3$.

Solution

Problem 2

Find the number of ordered positive integer pairs $(a,b,c)$ such that $a$ evenly divides $b$, $b+1$ evenly divides $c$, and $c-a=10$. Solution

Problem 3

Solution


Problem 4

Solution


Problem 5

Solution


Problem 6

Solution


Problem 7

Solution


Problem 8

Solution


Problem 9

Solution


Problem 10

Solution


Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Invalid username
Login to AoPS