Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 9"

(No difference)

Revision as of 15:29, 3 April 2012


In right triangle $\displaystyle ABC,$ $\displaystyle \angle C=90^\circ.$ Cevians $\displaystyle AX$ and $\displaystyle BY$ intersect at $\displaystyle P$ and are drawn to $\displaystyle BC$ and $\displaystyle AC$ respectively such that $\displaystyle \frac{BX}{CX}=\frac23$ and $\displaystyle \frac{AY}{CY}=\sqrt 3.$ If $\displaystyle \tan \angle APB= \frac{a+b\sqrt{c}}{d},$ where $\displaystyle a,b,$ and $\displaystyle d$ are relatively prime and $\displaystyle c$ has no perfect square divisors excluding $\displaystyle 1,$ find $\displaystyle a+b+c+d.$


This problem needs a solution. If you have a solution for it, please help us out by adding it.

Invalid username
Login to AoPS