Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 3"

(solution)
m
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
 
==Solution==
 
==Solution==
 
Substituting <math>\frac{1}{x}</math>, we have
 
Substituting <math>\frac{1}{x}</math>, we have
 +
 
<cmath>2f\left(\frac 1x\right) + f\left(x\right) = \frac{5}{x} + 4</cmath>
 
<cmath>2f\left(\frac 1x\right) + f\left(x\right) = \frac{5}{x} + 4</cmath>
 +
 
This gives us two equations, which we can eliminate <math>f\left(\frac 1x\right)</math> from (the first equation multiplied by two, subtracting the second):
 
This gives us two equations, which we can eliminate <math>f\left(\frac 1x\right)</math> from (the first equation multiplied by two, subtracting the second):
 +
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
3f(x) &= 10x + 4 - \frac 5x \\
 
3f(x) &= 10x + 4 - \frac 5x \\
 
0 &= x^2 - \frac{3 \times 2004 - 4}{10}x + \frac 52\end{align*}</cmath>
 
0 &= x^2 - \frac{3 \times 2004 - 4}{10}x + \frac 52\end{align*}</cmath>
 +
 
Clearly, the [[discriminant]] of the [[quadratic equation]] <math>\Delta > 0</math>, so both roots are real. By [[Vieta's formulas]], the sum of the roots is the coefficient of the <math>x</math> term, so our answer is <math>\left[\frac{3 \times 2004 - 4}{10}\right] = \boxed{601}</math>.
 
Clearly, the [[discriminant]] of the [[quadratic equation]] <math>\Delta > 0</math>, so both roots are real. By [[Vieta's formulas]], the sum of the roots is the coefficient of the <math>x</math> term, so our answer is <math>\left[\frac{3 \times 2004 - 4}{10}\right] = \boxed{601}</math>.
  
==See also==
+
==See Also==
 
{{Mock AIME box|year=Pre 2005|n=3|num-b=2|num-a=4}}
 
{{Mock AIME box|year=Pre 2005|n=3|num-b=2|num-a=4}}
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]

Latest revision as of 10:22, 4 April 2012

Problem

A function $f(x)$ is defined for all real numbers $x$. For all non-zero values $x$, we have

\[2f\left(x\right) + f\left(\frac{1}{x}\right) = 5x + 4\]

Let $S$ denote the sum of all of the values of $x$ for which $f(x) = 2004$. Compute the integer nearest to $S$.

Solution

Substituting $\frac{1}{x}$, we have

\[2f\left(\frac 1x\right) + f\left(x\right) = \frac{5}{x} + 4\]

This gives us two equations, which we can eliminate $f\left(\frac 1x\right)$ from (the first equation multiplied by two, subtracting the second):

\begin{align*} 3f(x) &= 10x + 4 - \frac 5x \\ 0 &= x^2 - \frac{3 \times 2004 - 4}{10}x + \frac 52\end{align*}

Clearly, the discriminant of the quadratic equation $\Delta > 0$, so both roots are real. By Vieta's formulas, the sum of the roots is the coefficient of the $x$ term, so our answer is $\left[\frac{3 \times 2004 - 4}{10}\right] = \boxed{601}$.

See Also

Mock AIME 3 Pre 2005 (Problems, Source)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15