# Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 3"

## Problem

A function $f(x)$ is defined for all real numbers $x$. For all non-zero values $x$, we have

$$2f\left(x\right) + f\left(\frac{1}{x}\right) = 5x + 4$$

Let $S$ denote the sum of all of the values of $x$ for which $f(x) = 2004$. Compute the integer nearest to $S$.

## Solution

Substituting $\frac{1}{x}$, we have

$$2f\left(\frac 1x\right) + f\left(x\right) = \frac{5}{x} + 4$$

This gives us two equations, which we can eliminate $f\left(\frac 1x\right)$ from (the first equation multiplied by two, subtracting the second):

\begin{align*} 3f(x) &= 10x + 4 - \frac 5x \\ 0 &= x^2 - \frac{3 \times 2004 - 4}{10}x + \frac 52\end{align*}

Clearly, the discriminant of the quadratic equation $\Delta > 0$, so both roots are real. By Vieta's formulas, the sum of the roots is the coefficient of the $x$ term, so our answer is $\left[\frac{3 \times 2004 - 4}{10}\right] = \boxed{601}$.

## See Also

 Mock AIME 3 Pre 2005 (Problems, Source) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15
Invalid username
Login to AoPS