Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 6"

(Solution 2)
(Solution 2)
Line 38: Line 38:
 
<cmath>n=a^2+b^2c</cmath>
 
<cmath>n=a^2+b^2c</cmath>
 
<cmath>\sqrt{n^2-1}=2ab\sqrt{c}</cmath>
 
<cmath>\sqrt{n^2-1}=2ab\sqrt{c}</cmath>
 
+
calling them equations <math>A</math> and <math>B</math>, respectively. Also we have
Also we have
 
 
<cmath>\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=\sqrt{n-\sqrt{n^2-1}}</cmath>
 
<cmath>\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=\sqrt{n-\sqrt{n^2-1}}</cmath>
 
<cmath>\frac{1}{a+b\sqrt{c}}=a-b\sqrt{c}</cmath>
 
<cmath>\frac{1}{a+b\sqrt{c}}=a-b\sqrt{c}</cmath>
<cmath>a^2-b^2c=1</cmath>
+
<math></math>a^2-b^2c=1<math>
 +
which obtains equation </math>C$.
 +
L
  
 
==See Also==
 
==See Also==

Revision as of 13:38, 28 November 2019

Problem

Let $S$ denote the value of the sum

\[\sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}}\]

$S$ can be expressed as $p + q \sqrt{r}$, where $p, q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime. Determine $p + q + r$.

Solution

Notice that $\sqrt{n + \sqrt{n^2 - 1}} = \frac{1}{\sqrt{2}}\sqrt{2n + 2\sqrt{(n+1)(n-1)}} = \frac{1}{\sqrt{2}}\left(\sqrt{n+1}+\sqrt{n-1}\right)$. Thus, we have

\[\sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}}\] \[= \sqrt{2}\sum_{n = 1}^{9800} \frac{1}{\sqrt{n+1}+\sqrt{n-1}}\] \[= \frac{1}{\sqrt{2}}\sum_{n = 1}^{9800} \left(\sqrt{n+1}-\sqrt{n-1}\right)\]

This is a telescoping series; note that when we expand the summation, all of the intermediary terms cancel, leaving us with $\frac{1}{\sqrt{2}}\left(\sqrt{9801}+\sqrt{9800}-\sqrt{1}-\sqrt{0}\right) = 70 + 49\sqrt{2}$, and $p+q+r=\boxed{121}$.


Solution 2

Simplifying the expression yields \begin{align*} S &= \sum_{n=1}^{9800}\frac{1}{\sqrt{n+\sqrt{n^2-1}}} \\ &= \sum_{n=1}^{9800}\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}} \\ &= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \\ &= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1}})\cdot(\sqrt{n+\sqrt{n^2-1}})^2 \\ &= \sum_{n=1}^{9800}\sqrt{n-\sqrt{n^2-1}} \end{align*} Now we can assume that \[\sqrt{n+\sqrt{n^2-1}}=a+b\sqrt{c}\] \[\sqrt{n-\sqrt{n^2-1}}=a-b\sqrt{c}\] for some $a$, $b$, $c$.

Squaring the first equation yields \[n+\sqrt{n^2-1}=a^2+b^2c+2ab\sqrt{c}\] which gives the system of equations \[n=a^2+b^2c\] \[\sqrt{n^2-1}=2ab\sqrt{c}\] calling them equations $A$ and $B$, respectively. Also we have \[\frac{1}{\sqrt{n+\sqrt{n^2-1}}}=\sqrt{n-\sqrt{n^2-1}}\] \[\frac{1}{a+b\sqrt{c}}=a-b\sqrt{c}\] $$ (Error compiling LaTeX. Unknown error_msg)a^2-b^2c=1$which obtains equation$C$. L

See Also

Mock AIME 3 Pre 2005 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15