Difference between revisions of "Molar heat capacity"

(create article)
 
(spacing)
Line 1: Line 1:
 
Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath>
 
Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath>
 
<math>\Delta Q=</math> change in heat
 
<math>\Delta Q=</math> change in heat
 +
<br />
 
<math>n=</math> moles of substance
 
<math>n=</math> moles of substance
 +
<br />
 
<math>c_M=</math> molar heat capacity
 
<math>c_M=</math> molar heat capacity
 +
<br />
 
<math>\Delta T=</math> change in temperature
 
<math>\Delta T=</math> change in temperature
 
+
<br />
 +
<br />
 
At constant volume, <math>c_M=c_V</math>.
 
At constant volume, <math>c_M=c_V</math>.
 +
<br />
 
At constant pressure, <math>c_M=c_P</math>.
 
At constant pressure, <math>c_M=c_P</math>.
 
+
<br />
For an ideal gas, <math>c_P=c_V+R</math>.
+
<br />
 +
For an ideal gas, <math>c_P=c_V+R</math> where <math>R=</math> the ideal gas constant.
 +
<br />
 
For an incompressible substance, <math>c_P=c_V</math>.
 
For an incompressible substance, <math>c_P=c_V</math>.
 
+
<br />
 +
<br />
 
In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>.
 
In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>.

Revision as of 05:30, 27 November 2019

Adding heat to a substance changes its temperature in accordance to \[\Delta Q=nc_M\Delta T\] $\Delta Q=$ change in heat
$n=$ moles of substance
$c_M=$ molar heat capacity
$\Delta T=$ change in temperature

At constant volume, $c_M=c_V$.
At constant pressure, $c_M=c_P$.

For an ideal gas, $c_P=c_V+R$ where $R=$ the ideal gas constant.
For an incompressible substance, $c_P=c_V$.

In adiabatic compression ($\Delta Q=0$) of an ideal gas, $PV^\gamma$ stays constant, where $\gamma=\frac{c_V+R}{c_V}$.