# Difference between revisions of "Molar heat capacity"

(create article) |
(spacing) |
||

Line 1: | Line 1: | ||

Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath> | Adding heat to a substance changes its temperature in accordance to <cmath>\Delta Q=nc_M\Delta T</cmath> | ||

<math>\Delta Q=</math> change in heat | <math>\Delta Q=</math> change in heat | ||

+ | <br /> | ||

<math>n=</math> moles of substance | <math>n=</math> moles of substance | ||

+ | <br /> | ||

<math>c_M=</math> molar heat capacity | <math>c_M=</math> molar heat capacity | ||

+ | <br /> | ||

<math>\Delta T=</math> change in temperature | <math>\Delta T=</math> change in temperature | ||

− | + | <br /> | |

+ | <br /> | ||

At constant volume, <math>c_M=c_V</math>. | At constant volume, <math>c_M=c_V</math>. | ||

+ | <br /> | ||

At constant pressure, <math>c_M=c_P</math>. | At constant pressure, <math>c_M=c_P</math>. | ||

− | + | <br /> | |

− | For an ideal gas, <math>c_P=c_V+R</math>. | + | <br /> |

+ | For an ideal gas, <math>c_P=c_V+R</math> where <math>R=</math> the ideal gas constant. | ||

+ | <br /> | ||

For an incompressible substance, <math>c_P=c_V</math>. | For an incompressible substance, <math>c_P=c_V</math>. | ||

− | + | <br /> | |

+ | <br /> | ||

In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>. | In adiabatic compression (<math>\Delta Q=0</math>) of an ideal gas, <math>PV^\gamma</math> stays constant, where <math>\gamma=\frac{c_V+R}{c_V}</math>. |

## Revision as of 05:30, 27 November 2019

Adding heat to a substance changes its temperature in accordance to
change in heat

moles of substance

molar heat capacity

change in temperature

At constant volume, .

At constant pressure, .

For an ideal gas, where the ideal gas constant.

For an incompressible substance, .

In adiabatic compression () of an ideal gas, stays constant, where .